高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

一种基于多邻域非线性扩散的动态规划全局立体匹配算法

耿冬冬 罗娜

耿冬冬, 罗娜. 一种基于多邻域非线性扩散的动态规划全局立体匹配算法[J]. 华东理工大学学报(自然科学版), 2017, (5): 677-683. doi: 10.14135/j.cnki.1006-3080.2017.05.012
引用本文: 耿冬冬, 罗娜. 一种基于多邻域非线性扩散的动态规划全局立体匹配算法[J]. 华东理工大学学报(自然科学版), 2017, (5): 677-683. doi: 10.14135/j.cnki.1006-3080.2017.05.012
GENG Dong-dong, LUO Na. A Dynamic Programming Global Stereo Matching Algorithm Based on Multiple Neighbors' Nonlinear Diffusion[J]. Journal of East China University of Science and Technology, 2017, (5): 677-683. doi: 10.14135/j.cnki.1006-3080.2017.05.012
Citation: GENG Dong-dong, LUO Na. A Dynamic Programming Global Stereo Matching Algorithm Based on Multiple Neighbors' Nonlinear Diffusion[J]. Journal of East China University of Science and Technology, 2017, (5): 677-683. doi: 10.14135/j.cnki.1006-3080.2017.05.012

一种基于多邻域非线性扩散的动态规划全局立体匹配算法

doi: 10.14135/j.cnki.1006-3080.2017.05.012
基金项目: 

国家自然科学基金(61403140);上海市自然科学基金(13ZR1411500)

A Dynamic Programming Global Stereo Matching Algorithm Based on Multiple Neighbors' Nonlinear Diffusion

  • 摘要: 双目立体视觉匹配通过两幅具有一定视差的图像获得精确、稠密的视差图。为了解决动态规划立体匹配算法橫条纹瑕疵以及精度低的问题,提出了一种基于多邻域非线性扩散的立体匹配算法。该算法采用AD测度函数构建视差空间,根据行列像素之间的约束关系,基于非线性扩散的代价聚合方法,通过图像边缘的动态优化寻求全局能量函数最优值得到稠密视差图。在Middlebury测试集上的实验结果表明,该算法的平均误匹配率为5.60%,相比IIDP动态规划全局匹配算法,精度提高了39.9%,有效地解决了横向条纹问题,改善了边缘模糊情况,且提升了算法的稳定性。与其他全局匹配算法相比,本文算法误匹配率降低了38.2%,在图像参数的11个指标中有9项指标排名第1。

     

  • [1] TIPPETTS B,LEE D J,LILLYWHITE K,et al.Review of stereo vision algorithms and their suitability for resource-limited systems[J].Journal of Real-Time Image Processing,2016,11(1):5-25.
    [2] BROWN M Z,BURSCHKA D,HAGER G D.Advances in computational stereo[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2003,25(8):993-1008.
    [3] DUMONT M,GOORTS P,MAESEN S,et al.Real-time local stereo matching using edge sensitive adaptive windows[C]//International Conference on Signal Processing and Multimedia Applications.Switzerland:Springer,2015:117-126.
    [4] HOSNI A,BLEYER M,GELAUTZ M.Secrets of adaptive support weight techniques for local stereo matching[J].Computer Vision & Image Understanding,2013,117(6):620-632.
    [5] PAN S C.Stereo matching algorithm based on belief propagation system[J].Applied Mechanics & Materials,2015,713/715:1931-1934.
    [6] KOLMOGOROV V,MONASSE P,TAN P.Kolmogorov and Zabih's graph cuts stereo matching algorithm[J].Image Processing on Line,2014(4):220-251.
    [7] TANIAI T,MATSUSHITA Y,NAEMURA T.Graph cut based continuous stereo matching using locally shared labels[C]//IEEE Conference on Computer Vision and Pattern Recognition.USA:IEEE Computer Society,2014:1613-1620.
    [8] KIM J H,KWON J W,YUN H K.Multi-baseline based texture adaptive belief propagation stereo matching technique for dense depth-map acquisition[C]//International Conference on Electronics,Information and Communications.USA:IEEE,2014:1-2.
    [9] HERRERA P J,PAJARES G,GUIJARRO M,et al.Combining support vector machines and simulated annealing for stereovision matching with fish eye lenses in forest environments[J].Expert Systems with Applications,2011,38(7):8622-8631.
    [10] WANG X,LIU Y.Accurate and fast convergent initial-value belief propagation for stereo matching[J].Plos One,2015,10(9):e0137530.
    [11] KLAUS A,SORMANN M,KARNER K.Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]//International Conference on Pattern Recognition.USA:IEEE Computer Society,2006:15-18.
    [12] YANG Y,WANG X,LIANG Q.Belief propagation stereo matching algorithm based on ground control points and spatiotemporal consistency[C]//International Congress on Image and Signal Processing.USA:IEEE,2015:79-80.
    [13] OHTA Y,KANADE T.Stereo by intra-and inter-scanline search using dynamic programming[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,1985,7(2):139-154.
    [14] BIRCHFIELD S,TOMASI C.Depth discontinuities by pixel-to-pixel stereo[J].International Journal of Computer Vision,1999,35(3):269-293.
    [15] LEUNG C,APPLETON B,SUN C.Fast stereo matching by iterated dynamic programming and quadtree subregioning[C]//British Machine Vision Conference.UK:[s.n.],2004:97-106.
    [16] SCHARSTEIN D,SZELISKI R.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[C]//Stereo and Multi-Baseline Vision.USA:IEEE,2001:131-140.
    [17] PERONA P,MALIK J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,1990,12(7):629-639.
    [18] WANG P,CHEN C,WEI F F.A Stereo Matching Algorithm Based on Outline-Assisted Dynamic Programming[M].Berlin Heidelberg:Springer,2014:297-306.
    [19] WEI P Y.Research on stereo matching algorithms of binocular vision[D].Chongqing:Chongqing University,2009.
    [20] 狄红卫,柴颖,李逵.一种快速双目视觉立体匹配算法[J].光学学报,2009,29(8):2180-2184.
    [21] HUMENBERGER M,ZINNER C,WEBER M,et al.A fast stereo matching algorithm suitable for embedded real-time systems[J].Computer Vision & Image Understanding,2010,114(11):1180-1202.
  • 加载中
图(1)
计量
  • 文章访问数:  1509
  • HTML全文浏览量:  207
  • PDF下载量:  421
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-16
  • 刊出日期:  2017-10-28

目录

    /

    返回文章
    返回