高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于数据驱动的闭环脑机接口设计

孙京诰 戚川 潘红光

孙京诰, 戚川, 潘红光. 基于数据驱动的闭环脑机接口设计[J]. 华东理工大学学报(自然科学版), 2017, (5): 655-661. doi: 10.14135/j.cnki.1006-3080.2017.05.009
引用本文: 孙京诰, 戚川, 潘红光. 基于数据驱动的闭环脑机接口设计[J]. 华东理工大学学报(自然科学版), 2017, (5): 655-661. doi: 10.14135/j.cnki.1006-3080.2017.05.009
SUN Jing-gao, QI Chuan, PAN Hong-guang. Design of Closed Loop Brain Computer Interface Based on Data Driven[J]. Journal of East China University of Science and Technology, 2017, (5): 655-661. doi: 10.14135/j.cnki.1006-3080.2017.05.009
Citation: SUN Jing-gao, QI Chuan, PAN Hong-guang. Design of Closed Loop Brain Computer Interface Based on Data Driven[J]. Journal of East China University of Science and Technology, 2017, (5): 655-661. doi: 10.14135/j.cnki.1006-3080.2017.05.009

基于数据驱动的闭环脑机接口设计

doi: 10.14135/j.cnki.1006-3080.2017.05.009
基金项目: 

国家自然科学基金青年基金(61603295)

Design of Closed Loop Brain Computer Interface Based on Data Driven

  • 摘要: 基于神经元峰电位的植入式脑机接口开展相关研究,通过搭建大脑皮层仿真模型,并在控制理论分析的基础上进行自发单关节运动任务。使用自适应维纳滤波器完成神经元放电活动的线性解码器设计。通过分析发现在视觉反馈信息缺失时,解码器性能严重下降。针对此问题,使用基于数据驱动算法的紧格式无模型控制算法产生刺激信号来刺激仿真大脑皮层感觉区神经元,使其跟踪存在感官反馈时感觉区神经元的放电活动。由于感觉区神经元放电信息的恢复,解码器在感觉反馈信息缺失时的性能也得到了恢复。最后,通过仿真验证了基于数据驱动算法的人工感官反馈有效性,并与整定的PID控制算法对比,结果验证了本文设计的闭环系统的有效性。

     

  • [1] NICOLELIS M A L,LEBEDEV M A.Principles of neural ensemble physiology underlying the operation of brain-machine interfaces[J].Nature Reviews Neuroscience,2009,10(7):530-540.
    [2] PAN H,DING B,ZHONG W,et al.Designing closed-loop brain-machine interfaces with network of spiking neurons using MPC strategy[C]//American Control Conference IEEE.USA:IEEE, 2015:2543-2548.
    [3] CUNNINGHAM J P,NUYUJUKIAN P,GILJA V,et al.A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces[J].Journal of Neurophysiology,2011,105(4):1932-1949.
    [4] KOBER S E,WOOD G,KURZMANN J,et al.Near-infrared spectroscopy based neuron feedback training increases specific motor imagery related cortical activation compared to sham feedback[J].Biological Psychology,2014,95(1):21-30.
    [5] BIRBAUMER N,COHEN L G.Brain-computer interfaces:Communication and restoration of movement in paralysis[J].Journal of Physiology,2007,579(3):621-636.
    [7] KOYAMA S,CHASE S M,WHITFORD A S,et al.Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control[J].Journal of Computational Neuroscience,2010,29(1):73-87.
    [8] ODOHERTY J E,LEBEDEV M A,IFFT P J,et al.Active tactile exploration using a brain-machine-brain interface[J].Nature,2011,479(7372):228-31.
    [8] GARCÍA-CÍRDOVA F.A cortical network for control of voluntary movements in a robot finger[J].Neurocomputing,2007,71(1/3):374-391.
    [9] DOUGLAS J W,BRIAN M L,JAMES A H,et al.Limb-state information encoded by peripheral and central somatosensory neurons:Implications for an afferent interface[J].IEEE Transactions on Neural Systems & Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society,2011,19(5):501-513.
    [10] 侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667.
    [11] BULLOCK D,CISEK P,GROSSBERG S.Cortical networks for control of voluntary arm movements under variable force conditions[J].Cerebral Cortex,1998,8(1):48-62.
    [12] KIM S P,SANCHEZ J C,RAO Y N,et al.A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces[J].Journal of Neural Engineering,2006,3(2):145-61.
    [13] SUSSILLO D,NUYUJUKIAN P,JOLINE M F,et al.A recurrent neural network for closed-loop intracortical brain-machine interface decoders[J].Journal of Neural Engineering,2012,9(2):026027.
    [14] LI S,ZHUANG C,HAO M,et al.Coordinated alpha and gamma control of muscles and spindles in movement and posture[J].Frontiers in Computational Neuroscience,2015,9:122.
    [15] ALEXANDER G E,CRUTCHER M D.Preparation for movement:Neural representations of intended direction in three motor areas of the monkey[J].Journal of Neurophysiology,1990, 64(1):133-150.
    [16] JIN S T,HOU Z S,CHI R H,et al.Data-driven model-free adaptive iterative learning control for a class of discrete-time nonlinear systems[J].Control Theory & Applications,2012,29:1001-1009.
    [17] LENG Yancun,LI Hongxin,WANG Pu,et al.Model-free adaptive control with contractive constraints for nonlinear systems[C]//International Conference on Intelligent Human-Machine Systems & Cybernetics.USA:IEEE,2014:288-291.
    [18] KUMAR G,SCHIEBER M H,THAKOR N V,et al.Designing closed-loop brain-machine interfaces using optimal receding horizon control[C]//American Control Conference.USA:IEEE,2013:5029-5034.
  • 加载中
图(1)
计量
  • 文章访问数:  1596
  • HTML全文浏览量:  244
  • PDF下载量:  605
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-15
  • 刊出日期:  2017-10-28

目录

    /

    返回文章
    返回