高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

中空纤维膜反应器结合芬顿试剂脱除燃煤烟气中的Hg0

于明磊 马良 张艳红 汪华林 于新海 杨雪晶

于明磊, 马良, 张艳红, 汪华林, 于新海, 杨雪晶. 中空纤维膜反应器结合芬顿试剂脱除燃煤烟气中的Hg0[J]. 华东理工大学学报(自然科学版), 2017, (5): 647-654,676. doi: 10.14135/j.cnki.1006-3080.2017.05.008
引用本文: 于明磊, 马良, 张艳红, 汪华林, 于新海, 杨雪晶. 中空纤维膜反应器结合芬顿试剂脱除燃煤烟气中的Hg0[J]. 华东理工大学学报(自然科学版), 2017, (5): 647-654,676. doi: 10.14135/j.cnki.1006-3080.2017.05.008
YU Ming-lei, MA Liang, ZHANG Yan-hong, WANG Hua-lin, YU Xin-hai, YANG Xue-jing. Removal of Hg0 from Simulated Flue Gas by Fenton Process in A Hollow Fiber Reactor[J]. Journal of East China University of Science and Technology, 2017, (5): 647-654,676. doi: 10.14135/j.cnki.1006-3080.2017.05.008
Citation: YU Ming-lei, MA Liang, ZHANG Yan-hong, WANG Hua-lin, YU Xin-hai, YANG Xue-jing. Removal of Hg0 from Simulated Flue Gas by Fenton Process in A Hollow Fiber Reactor[J]. Journal of East China University of Science and Technology, 2017, (5): 647-654,676. doi: 10.14135/j.cnki.1006-3080.2017.05.008

中空纤维膜反应器结合芬顿试剂脱除燃煤烟气中的Hg0

doi: 10.14135/j.cnki.1006-3080.2017.05.008

Removal of Hg0 from Simulated Flue Gas by Fenton Process in A Hollow Fiber Reactor

  • 摘要: 将中空纤维膜反应器和芬顿试剂结合脱除烟气中的Hg0。研究了不同参数以及SO2、NO和O2等杂质气体对Hg0脱除的影响。结果表明:随着H2O2浓度、Fe2+浓度、溶液初始pH和温度的增加,Hg0脱除率先增加后降低,其最佳工作条件是H2O2浓度为6 mmol/L,Fe2+浓度为9 mmol/L,溶液初始pH为2.5,温度为20℃;增大液气比和通过减小气相流量增大停留时间均对Hg0脱除有增强作用,当液气比超过0.11时,Hg0的脱除率不再增加;当气相流量为0.6 L/min时,Hg0脱除率超过85%;SO2、NO对Hg0的脱除有抑制作用,O2对Hg0的脱除几乎没有影响;还测定出温度20℃下中空纤维膜反应器的比相界面积a=270.29 m-1和传质动力学参数kL=8.13×10-4 m/s,kG=0.786×10-6 mol/(m2·s·Pa)。

     

  • [1] WEI Jinchao,LUO Yunbai,YU Ping,et al.Removal of NO from flue gas by wet scrubbing with NaClO2/(NH2)2CO solutions[J].Journal of Industrial & Engineering Chemistry,2009,15(1):16-22.
    [2] CLARKSON T W,MAGOS L.The toxicology of mercury and its chemical compounds[J].Critical Reviews in Toxicology,2006,36(8):609-662.
    [3] YANG Shijian,YAN Naiqiang,GUO Yongfu,et al.Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3-x Mnx)1-δ,O4[J].Environmental Science & Technology,2011,45(4):1540-1545.
    [4] BYUN Y,KOH D J,SHIN D N.Removal mechanism of elemental mercury by using non-thermal plasma[J].Chemosphere,2011,83(1):69-75.
    [5] LIU Yangxian,PAN Jianfeng,WANG Qian.Removal of Hg0,from containing-SO2 NO flue gas by ultraviolet/H2O2,process in a novel photochemical reactor[J].American Institute of Chemical Engineers Journal,2014,60(6):2275-2285.
    [6] LIU Yangxian,ZHANG Jun,YIN Yanshan.Study on absorption of elemental mercury from flue gas by UV/H2O2:Process parameters and reaction mechanism[J].Chemical Engineering Journal,2014,249:72-78.
    [7] LUSTIG H,NIEUWERBURGH S V.Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals[J].Air Repair,2010,60(5):514-535.
    [8] XU Xinhua,YE Qunfeng,TANG Tingmei,et al.Hg0,oxidative absorption by K2S2O8,solution catalyzed by Ag+ and Cu2+[J].Journal of Hazardous Materials,2008,158(2/3):410-416.
    [9] YAN Cao,CHEN Bobby,JIANG Wu,et al.Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal[J].Energy & Fuels,2007,21(1):145-156.
    [10] CAREY T R,OLIVER W,HARGROVE J,et al.Factors affecting mercury control in utility flue gas using activated carbon[J].Journal of the Air & Waste Management Association,1998,48(12):1166-1174.
    [11] FEELEY I T J,BRICKETT L A,O'PALKO B A,et al.Field testing of mercury control technologies for coal-fired power plants:Report of DOE/NETL Mercury R&D Program Review,[R].[s.l.] [s.n.],2005:1-21.
    [12] HSI H C,ROOD M J,ASCE M,et al.Mercury adsorption properties of sulfur-impregnated adsorbents[J].Journal of Environmental Engineering,2002,128(11):1080-1089.
    [13] GHORISHI S B,KEENEY R M,SERRE S D,et al.Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury[J].Environmental Science & Technology,2002,36(20):4454-4459.
    [14] JONES A P,HOFFMANN J W,SMITH D N,et al.DOE/NETL's phase Ⅱ mercury control technology field testing program:Preliminary economic analysis of activated carbon injection[J].Environmental Science & Technology,2007,41(4):1365-1371.
    [15] FANG Ping,CEN Chaoping,TANG Zijun.Experimental study on the oxidative absorption of Hg0,by KMnO4 solution[J].Chemical Engineering Journal,2012,198/199(4):95-102.
    [16] LU Dennis,ANTHONY E J,TAN Y,et al.Mercury removal from coal combustion by Fenton reactions:Part A.Bench-scale tests[J].Fuel,2007,86(17/18):2789-2797.
    [17] TAN Yewen,LU Dennis,ANTHONY E J,et al.Mercury removal from coal combustion by Fenton reactions:Part B.Pilot-scale tests[J].Fuel,2007,86(17):2798-2805.
    [18] DUREAU R,KO V,ANTHONY E J,et al.Oxidation of mercury under ultraviolet (UV) irradiation[J].Energy & Fuels,2010,24(8):4351-4356.
    [19] ZHAN F,LI C,ZENG G,et al.Experimental study on oxidation of elemental mercury by UV/Fenton system[J].Chemical Engineering Journal,2013,232(9):81-88.
    [20] FERON P,JANSEN A E.Capture of carbon dioxide using membrane gas absorption and reuse in the horticultural industry[J].Energy Conversion & Management,1995,36(6/9):411-414.
    [21] MAVROUDI M,KALDIS S P,SAKELLAROPOULOS G P.Reduction of CO2,emissions by a membrane contacting process[J].Fuel,2003,82(15/17):2153-2159.
    [22] ALVARO I M,BELA K D.Kinetic modeling of H2O2-enhanced oxidation of flue gas elemental mercury[J].Fuel Processing Technology,2007(88):982-987.
    [23] LIU Yangxian,ZHANG Jun.Photochemical oxidation removal of NO and SO2 from simulated flue gas of coal-fired power plants by wet scrubbing using UV/H2O2 advanced oxidation process[J].Industrial & Engineering Chemistry Research,2011,50(7):3836-3841.
    [24] LIU Yangxian,Zhang Jun,SHENG Changdong,et al.Simultaneous removal of NO and SO2,from coal-fired flue gas by UV/H2O2 advanced oxidation process[J].Chemical Engineering Journal,2010,162(3):1006-1011.
    [25] MURUGANANDHAM M,SWAMINATHAN M.Decolourisation of reactive orange-4 by Fenton and photo-Fenton oxidation technology[J].Dyes & Pigments,2004,63(3):315-321.
    [26] HABER F,WEISS J.Vber die katalyse des hydroperoxydes[J].The Science of Nature,1932,20(51):948-950.
    [27] COLLE S,VANDERSCHUREN J,THOMAS D.Simulation of SO2,absorption into sulfuric acid solutions containing hydrogen peroxide in the fast and moderately fast kinetic regimes[J].Chemical Engineering Science,2005,60(22):6472-6479.
    [28] COLLE S,VANDERSCHUREN J,THOMAS D.Pilot-scale validation of the kinetics of SO2,absorption into sulphuric acid solutions containing hydrogen peroxide[J].Chemical Engineering & Processing,2004,43(11):1397-1402.
    [29] CHENG Chinmin,YAN Cao,ZHANG Kai,et al.Co-effects of sulfur dioxide load and oxidation air on mercury re-emission in forced-oxidation limestone flue gas desulfurization wet scrubber[J].Fuel,2013,106(4):505-511.
    [30] GUO Ruitang,PAN Weiguo,ZHANG Xiaobo,et al.Removal of NO by using Fenton reagent solution in a lab-scale bubbling reactor[J].Fuel,2011,90(11):3295-3298.
    [31] LIU Yangxian,ZHANG Jun.Photochemical oxidation removal of NO and SO2 from simulated flue gas of coal-fired power plants by wet scrubbing using UV/H2O2 advanced oxidation process[J].Industrial & Engineering Chemistry Research,2011,50(7):3836-3841.
    [32] CLEVER H L,JOHNSON S A,DERRICK M E.Solubility of mercury and mercury salts in water and aqueous solutions[J].Journal of Physical and Chemical Reference Data,1985,14(3):637-639.
    [33] SITARAMAN R,IBRAHIM S H,KULOORN R.A generalized equation for diffusion in liquids[J].Journal of Chemical and Engineering Data,1996,42(12):3559-3562.
    [34] YANG Hongqun,XU Zhenghe,FAN Maohong,et al.Adsorbents for capturing mercury in coal-fired boiler flue gas.[J].Journal of Hazardous Materials,2007,146(1/2):1-11.
    [35] 赵毅,刘松涛,要杰,等.亚氯酸钠溶液脱除Hg0及传质-反应动力学研究[J].中国科学:技术科学,2010,40(5):532-539.
  • 加载中
图(1)
计量
  • 文章访问数:  1533
  • HTML全文浏览量:  219
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-12
  • 刊出日期:  2017-10-28

目录

    /

    返回文章
    返回