高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ
引用本文:
Citation:

基于瞬时纳米沉淀法制备尺寸可控载药纳米粒子

    通讯作者: 李莉, lili76131@ecust.edu.cn
  • 基金项目: 国家自然科学基金(21476143)

Preparation of Size-Controllable Drug Loaded Nano Particles Based on Flash Nano Precipitation Method

    Corresponding author: LI Li, lili76131@ecust.edu.cn ;
  • 摘要: 合成了5种具有不同分子量、不同亲疏水链段比例的两亲性嵌段共聚物——甲氧基聚乙二醇-b-聚己内酯(mPEG-b-PCL),并以其为表面活性剂,采用瞬时纳米沉淀(Flash Nano Precipitation,FNP)法制备出一系列包裹模型药物β-胡萝卜素的纳米粒子。通过改变两亲性共聚物的结构、分子量、浓度及溶剂体积比(V(H2O):V(THF)),成功实现了对纳米粒子尺寸的调控。实验结果表明:聚合物亲水链段分子量比例增大,则纳米粒子尺寸减小;当亲水链段分子量比例相同时,聚合物分子量越大,则纳米粒子尺寸越小;当聚合物质量浓度较高(10.0 g/L)时,制备的纳米粒子粒径分布较窄,粒子性能较稳定。
  • [1] JOHNSON B K,PRUD'HOMME R K.Mechanism for rapid self-assembly of block copolymer nanoparticles[J].Physical Review Letters,2003,91(11):1-4.
    [2] JOHNSON B K,PRUD'HOMME R K.Chemical processing and micromixing in confined impinging jets[J].AIChE Journal,2003,49(9):2264-2282.
    [3] LIU Ying,CHEN Chungyin.Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation[J].Chemical Engineering Science,2008,63(11):2829-2842.
    [4] RUSS B,LIU Ying,PRUD'HOMME R K.Optimized descriptive model for micromixing in a vortex miner[J].Chemical Engineering Communications,2010,197(8):1068-1075.
    [5] BLANAZS A,ARMES S P,RYAN A J.Self-assembled block copolymer aggregates:From micelles to vesicles and their biological applications[J].Macromolecular Rapid Communications,2009,30(4/5):267-277.
    [6] SUN Huanli,GUO Bingnan,LI Xiaoqing,et al.Shell-sheddable micelles based on dextran-SS-poly(ε-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin[J].Biomacromolecules,2010,11(4):848-854.
    [7] ZHULINA E B,ADAM M,LARUE I,et al.Diblock copolymer micelles in a dilute solution[J].Macromolecules,2005,38(12):5330-5351.
    [8] AATHIMANIKANDAN S V,SAVARIAR E N,THAYUMANAVAN S.Temperature-sensitive dendritic micelles[J].Journal of American Chemical Society,2005,127(42):14922-14929.
    [9] JI Yongqiang,WANG Weishan,LI Ganzuo,et al.Rheological properties of wormlike micelles formed in the sodium oleate/trisodium phosphate aqueous solution[J].Chinese Chemical Letters,2008,19(4):483-487.
    [10] MILLER T,COLEN G Van,SANDER B,et al.Drug loading of polymeric micelles[J].Pharmaceutical Research,2013,30(2):584-595.
    [11] MATSUOKA K,TAKAGI K,HONDA C.Micelle formation of sodiumhyodeoxycholate[J].Chemistry and Physics of Lipids,2013,172/173(3):6-13.
    [12] GINDY M E,PRUD'HOMME R K.Multifunctional nanoparticles for imaging,delivery and targeting in cancer therapy[J].Expert Opinion Drug Delivey,2009,6(8):865-878.
    [13] WANG Mingwei,XU Yisheng,WANNG Jie,et al.Biocompatible nanoparticle based on dextran-b-poly(L-lactide) block copolymer formed by flash nanoprecipitation[J].Chemistry Letters,2015,44(12):1688-1690.
    [14] WANG Mingwei,YANG Nan,GUO Zhiqian,et al.Facile preparation of AIE-active fluorescent nanoparticles through flash nanoprecipitation[J].Industrial & Engineering Chemistry Research,2015,54(17):4683-4688.
    [15] AKBULUT M,GINART P,GINDY M E,et al.Generic method of preparing multifunctional fluorescent nanoparticles using flash nano precipitation[J].Advanced Functional Materials,2009,19(5):718-725.
    [16] GINDY M E,PANAGIOTOPOULOS A Z,PRUD'HOMME R K.Composite block copolymer stabilized nanoparticles:Simultaneous encapsulation of organic actives and inorganic nanostructures[J].Langmuir,2008,24(1):83-90.
    [17] ADDIO D,PRUD'HOMME R K.Controlling drug nanoparticle formation by rapid precipitation[J].Advanced Drug Delivery Reviews,2011,63(6):417-426.
    [18] LIU Ying,TONG Zhen,PRUD'HOMME R K.Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin[J].Pest Management Science,2008,64(8):808-812.
    [19] ZHU Zhengxi.Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability[J].Biomaterials,2013,34(38):10238-10248.
    [20] GOU Maling,ZHENG Xiuling.Self-assembled hydrophobic honokiol loaded mPEG-PCL diblock copolymer micelles[J].Pharmaceutical Research,2009,26(9):2164-2173.
    [21] SHEN Yang,LENG Mengtian,YU Hongchi,et al.Effect of amphiphilic PCL-PEG nano-micelles on HepG2 cell migration[J].Macromolecular Bioscience,2015,15(3):372-384.
    [22] PENG Wei,JIANG Xinyi,ZHU Yuan,et al.Oral delivery of capsaicin using mPEG-PCL nanoparticles[J].Acta Pharmacologica Sinica,2015,36(1):139-148.
    [23] WANG Qin,JIANG Jiayu,CHEN Wenfei,et al.Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis[J].Journal of Controlled Release,2016,230:64-72.
    [24] LINCE F,MARCHISIO D L,BARRESI A A.Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications[J].Journal of Colloid and Interface Science,2008,322(2):505-515.
    [25] HWANG Minji,SUH Ju myung,BAE You han,et al.Caprolactonic poloxamer analog:PEG-PCL-PEG[J].Biomacromolecules,2005,6(2):885-890.
    [26] SHANNIGRAHI M,BAGCHI S.Novel fluorescent probe as aggregation predictor and micro-polarity reporter for micelles and mixed micelles[J].Spectrochimica Acta:Part A.Molecular and Biomolecular Spectroscopy,2005,61(9):2131-2138.
  • [1] 刘靖康李猛王铭纬徐益升 . 基于瞬时纳米沉淀法的球形纳米粒子电荷及粒径调控. 华东理工大学学报(自然科学版), 2020, 46(3): 334-340. doi: 10.14135/j.cnki.1006-3080.20190227003
    [2] 赵剑沈阳曹旭妮 . 基于铁蛋白的溶栓蛋白纳米粒子的构建及活性分析. 华东理工大学学报(自然科学版), 2019, 45(4): 576-584. doi: 10.14135/j.cnki.1006-3080.20180601001
    [3] 李俊潮陈启斌谭慧玲孟晨晨刘洪来 . 基于Boc-D-丙氨酸的手性聚合物纳米颗粒的聚集诱导发光. 华东理工大学学报(自然科学版), 2019, 45(4): 534-540. doi: 10.14135/j.cnki.1006-3080.20180514001
    [4] 刘秀军马骧 . 光响应型主客体超分子聚合物. 华东理工大学学报(自然科学版), 2019, 45(4): 517-527. doi: 10.14135/j.cnki.1006-3080.20190312001
    [5] 王秀丽王巧纯 . 基于葫芦脲衍生物超分子聚合物的构建与性能. 华东理工大学学报(自然科学版), 2020, 46(4): 510-516. doi: 10.14135/j.cnki.1006-3080.20190417001
    [6] 罗雪莉郎美东 . 聚合物前药载药性能的计算机模拟. 华东理工大学学报(自然科学版), 2020, 46(5): 664-674. doi: 10.14135/j.cnki.1006-3080.20190514001
    [7] 陈凯敏李凯郭旭虹 . 磁性聚合物刷的制备、功能化及其应用. 华东理工大学学报(自然科学版), 2020, 46(5): 579-588. doi: 10.14135/j.cnki.1006-3080.20190527002
    [8] 陈帅庞瑞淇刘思奕洪晨雨马绍花杲云田佳 . 卟啉半遥爪聚合物的制备及其在光动力疗法中的应用探讨. 华东理工大学学报(自然科学版), 2020, 46(3): 349-359. doi: 10.14135/j-cnki.1006-3080.20190309001
    [9] 李冰丛自豪肖希勉武月铭刘润辉 . 氨基酸聚合物用于提高冻干过程中蛋白稳定性的研究. 华东理工大学学报(自然科学版), 2020, 46(4): 526-532. doi: 10.14135/j.cnki.1006-3080.20190422001
    [10] 钟璇王宇飞黄晴郭鑫孟嘉祺李欣欣 . 含供电子取代基三苯胺基团苯并噁唑聚合物的合成与性能. 华东理工大学学报(自然科学版), 2020, 46(4): 464-471. doi: 10.14135/j.cnki.1006-3080.20190329006
    [11] 赵祥晴黄岩张维义岳志程振民 . 铜晶粒尺寸及其稳定性对醋酸乙酯加氢制乙醇的影响. 华东理工大学学报(自然科学版), 2020, 46(1): 1-9. doi: 10.14135/j.cnki.1006-3080.20181212004
    [12] 王秋生曹红亮杲云 . 酸和谷胱甘肽的双重响应性聚合物胶束负载光敏剂用于肿瘤细胞的光动力治疗. 华东理工大学学报(自然科学版), 2019, 45(3): 424-431. doi: 10.14135/j.cnki.1006-3080.20180411003
    [13] 徐田刘艺军何颖程起林 . CoNi-MOF/RGO复合物纳米片的制备及其储锂性能. 华东理工大学学报(自然科学版), 2020, 46(4): 502-509. doi: 10.14135/j.cnki.1006-3080.20190329001
    [14] 王学武闵永顾幸生 . 基于密度聚类的多目标粒子群优化算法. 华东理工大学学报(自然科学版), 2019, 45(3): 449-457. doi: 10.14135/j.cnki.1006-3080.20180321005
    [15] 赖兆林冯翔虞慧群 . 基于逆向学习行为粒子群算法的云计算大规模任务调度. 华东理工大学学报(自然科学版), 2020, 46(2): 259-268. doi: 10.14135/j.cnki.1006-3080.20190218001
    [16] 肖凌云马海燕 . 茂金属催化剂催化丙烯聚合的β-Me消除选择性研究. 华东理工大学学报(自然科学版), 2020, 46(3): 393-403. doi: 10.14135/j.cnki.1006-3080.20190329005
    [17] 盛宙颜秉勇周家乐王慧锋 . 基于模糊C均值和SLIC的纳米孔阻断事件的识别与研究. 华东理工大学学报(自然科学版), 2020, 46(1): 100-113. doi: 10.14135/j.cnki.1006-3080.20181206002
    [18] 钟郭程陈涛赵黎明邱勇俊徐梦帆 . 立构二嵌段聚乳酸微纳米纤维的制备与结晶性能. 华东理工大学学报(自然科学版), 2020, 46(4): 480-487. doi: 10.14135/j.cnki.1006-3080.20190404002
    [19] 谢博远马晓华许振良 . MOFs与碳纳米管双重改性渗透汽化复合膜及其性能研究. 华东理工大学学报(自然科学版), 2020, 46(5): 609-613. doi: 10.14135/j.cnki.1006-3080.20190809004
    [20] 周倩李莉张涛付智楠郭旭虹 . 基于磁性球形聚电解质刷制备可回收的银纳米催化剂. 华东理工大学学报(自然科学版), 2019, 45(4): 541-547. doi: 10.14135/j.cnki.1006-3080.20180705001
  • 加载中
图(1)
计量
  • 文章访问数:  7876
  • HTML全文浏览量:  600
  • PDF下载量:  1984
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-10
  • 刊出日期:  2017-10-28

基于瞬时纳米沉淀法制备尺寸可控载药纳米粒子

基金项目:  国家自然科学基金(21476143)

摘要: 合成了5种具有不同分子量、不同亲疏水链段比例的两亲性嵌段共聚物——甲氧基聚乙二醇-b-聚己内酯(mPEG-b-PCL),并以其为表面活性剂,采用瞬时纳米沉淀(Flash Nano Precipitation,FNP)法制备出一系列包裹模型药物β-胡萝卜素的纳米粒子。通过改变两亲性共聚物的结构、分子量、浓度及溶剂体积比(V(H2O):V(THF)),成功实现了对纳米粒子尺寸的调控。实验结果表明:聚合物亲水链段分子量比例增大,则纳米粒子尺寸减小;当亲水链段分子量比例相同时,聚合物分子量越大,则纳米粒子尺寸越小;当聚合物质量浓度较高(10.0 g/L)时,制备的纳米粒子粒径分布较窄,粒子性能较稳定。

English Abstract

(1)  参考文献 (26) 相关文章 (20)

目录

    /

    返回文章