高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于微带谐振器的三维约束微波微等离子体源的实现

唐佳丽 明小祥 于新海 王正东

唐佳丽, 明小祥, 于新海, 王正东. 基于微带谐振器的三维约束微波微等离子体源的实现[J]. 华东理工大学学报(自然科学版), 2016, (2): 271-276. doi: 10.14135/j.cnki.1006-3080.2016.02.019
引用本文: 唐佳丽, 明小祥, 于新海, 王正东. 基于微带谐振器的三维约束微波微等离子体源的实现[J]. 华东理工大学学报(自然科学版), 2016, (2): 271-276. doi: 10.14135/j.cnki.1006-3080.2016.02.019
TANG Jia-li, MING Xiao-xiang, YU Xin-hai, WANG Zheng-dong. Implementation of a Microwave Microplasma Source Based on Microstrip Resonator[J]. Journal of East China University of Science and Technology, 2016, (2): 271-276. doi: 10.14135/j.cnki.1006-3080.2016.02.019
Citation: TANG Jia-li, MING Xiao-xiang, YU Xin-hai, WANG Zheng-dong. Implementation of a Microwave Microplasma Source Based on Microstrip Resonator[J]. Journal of East China University of Science and Technology, 2016, (2): 271-276. doi: 10.14135/j.cnki.1006-3080.2016.02.019

基于微带谐振器的三维约束微波微等离子体源的实现

doi: 10.14135/j.cnki.1006-3080.2016.02.019
详细信息
  • 中图分类号: TN136

Implementation of a Microwave Microplasma Source Based on Microstrip Resonator

  • 摘要: 通过理论计算及HFSS仿真设计了微带谐振器,并通过比对三维约束结构存在的HFSS仿真结构验证了三维结构的可行性。实测制备的微带谐振器空载谐振频率为2.5GHz,回波损耗系数(S11)为-17.94dB。该微带谐振器成功实现了三维约束微尺度下,工作频率为2.5GHz,工作压强范围为30Pa至大气压、功率范围为0.7~6W时的微等离子体放电。通过光谱仪检测压强为7.5×104Pa下的Hβ谱线,应用斯塔克展宽求得此压强下平均电子密度为5.54×1013cm-3,该值符合微等离子体源的电子密度值。

     

  • [1] 菅井秀郎.等离子体电子工程学[M].北京:科学出版社,2002.
    [2] IZA F,KIM G J,LEE S M,et al.Microplasmas:Sources,particle kinetics,and biomedical applications[J].Plasma Processes and Polymers,2008,5:322-344.
    [3] JANASEK D,FRANZKE J,MANZ A.Scaling and the design of miniaturized chemical-analysis systems[J].Nature,2006,442(27):374-380.
    [4] SANKARAN R M,GIAPIS K P.Maskless etching of silicon using patterned microdischarges[J].Applied Physics Letters,2001,79(5):593-595.
    [5] IZA F,HOPWOOD J.Split-ring resonator microplasma:Microwave model,plasma impedanca and power efficiency[J].Plasma Sources Science and Technology,2005,14:397-406.
    [6] EIJKEL J C T,STOERI H,MANZ A.A molecular emission detector on a chip employing a direct current microplasma[J].Analytical Chemistry,1999,71(14):2600-2606.
    [7] LIU D W,SHI J J,KONG M G.Electron trapping in radio-frequency atmospheric-pressure glow discharges[J].Applied Physiscs Letters,2007,90(4):041502.
    [8] YIN Yu,MESSIER J,HOPWOOD J A.Miniaturization of inductively coupled plasma sources[J].IEEE Transactions on Plasma Science,1999,27(5):1516-1524.
    [9] BILGIC A M,ENGEL U,VOGES E.A new low-power microwave plasma source using microstrip technology for atomic spectrometry[J].Plasma Sources Science and Technology,2000,9(1):1-4.
    [10] HAUSCHILD J P,WAPELHORST E,MULLER J.Mass spectra measured by a fully integrated MEMS mass spectrometer[J].International Journal of Mass Spectrometry,2007,264(1):53-60.
    [11] 沈长圣,杨鸿生,龚克,等.微波氢气等离子体介电特性的研究[J].微波学报,2009,25(1):26-29.
    [12] 陈颖,李承跃,季天仁.新型大气压微波等离子体炬的仿真研究[J].强激光与粒子束,2011,23(10):2715-2718.
    [13] 刘永喜,张贵新,侯凌云,等.基于圆柱形谐振腔的高气压微波等离子体发生装置的电磁特性[J].高电压技术,2013,39(7):1757-1762.
    [14] REINHOLD Ludwig,PAVEL Bretchko.射频电路设计-理论与应用[M].北京.电子工业出版社,2011:42-44.
    [15] CAMPBELL J D,BOWMAN A,LENTERS G T,et al.Collision and diffusion in microwave breakdown of nitrogen gas in and around microgaps[J].AIP Advances,2014,4(1):017119.
    [16] ZHU Ximing,CHEN Wencong,PU Yikang.Gas temper-ature,electron density and electron temperature measurement in a microwave excited microplasma[J].Journal of Physics D:Applied Physics,2008,41(10):105212.
    [17] HOSKINSON A R,HOPWOOD J.Spatially resolved spectroscopy and electrical characterization of microplasmas and switchable microplasma arrays[J].Plasma Sources Science and Technology,2014,23(1):015024.
  • 加载中
计量
  • 文章访问数:  1502
  • HTML全文浏览量:  175
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-09
  • 刊出日期:  2016-04-29

目录

    /

    返回文章
    返回