高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

敲低EEF1A2增强拉帕替尼对HER2+乳腺癌细胞的药效

梁馨予 刘佳君 刘建文

梁馨予, 刘佳君, 刘建文. 敲低EEF1A2增强拉帕替尼对HER2+乳腺癌细胞的药效[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.
引用本文: 梁馨予, 刘佳君, 刘建文. 敲低EEF1A2增强拉帕替尼对HER2+乳腺癌细胞的药效[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.
LIANG Xinyu, LIU Jiajun, LIU Jianwen. Knockdown of EEF1A2 Enhanced the Efficacy of Lapatinib to HER2+ Breast Cancer Cells[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.
Citation: LIANG Xinyu, LIU Jiajun, LIU Jianwen. Knockdown of EEF1A2 Enhanced the Efficacy of Lapatinib to HER2+ Breast Cancer Cells[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.

敲低EEF1A2增强拉帕替尼对HER2+乳腺癌细胞的药效

doi: 10.14135/j.cnki.1006-3080.
详细信息
    作者简介:

    梁馨予(1995—),女,湖南湘潭人,硕士生,主要研究方向:乳腺癌致癌蛋白作用机制。E-mail:liangbingxin.ok@163.com

    通讯作者:

    刘建文,E-mail:liujian@ecust.edu.cn

  • 中图分类号: R73-36

Knockdown of EEF1A2 Enhanced the Efficacy of Lapatinib to HER2+ Breast Cancer Cells

  • 摘要: 探究乳腺癌中翻译延伸因子1α2(EEF1A2)与HER2间的潜在关系。通过TCGA分析EEF1A2 mRNA在乳腺癌中的表达情况;进行MTT(噻唑蓝)、克隆形成和Transwell实验检测HER2+乳腺癌细胞SKBR3和MDA-MB-453在EEF1A2蛋白表达敲低及Lapatinib处理后的增殖、迁移和凋亡情况。结果表明EEF1A2 mRNA在HER2+乳腺癌组织中高表达,并降低HER2+乳腺癌患者的总生存率;同时,SKBR3和MDA-MB-453细胞中EEF1A2敲低会增强Lapatinib对细胞体外增殖、迁移和侵袭的抑制,以及对凋亡的促进。Western blot结果表明,下调EEF1A2会增强Lapatinib对HER2+乳腺癌细胞中HER2/AKT通路的抑制。EEF1A2蛋白可成为改善Lapatinib治疗HER2+乳腺癌效果的潜在靶标。

     

  • 图  1  GEPIA2在线分析乳腺癌中EEF1A2的表达

    Figure  1.  EEF1A2 expression in breast cancer from GEPIA2 online database

    图  2  乳腺癌中EEF1A2 mRNA水平及对患者生存的影响与HER2表达状态相关

    *P < 0.05, **P < 0.01. ***P < 0.001

    Figure  2.  EEF1A2 expression in breast cancer and its influence on the survival of patients were correlated with HER2 status

    图  3  Western blotting检测(a) SKBR3和(b) MDA-MB-453细胞转染shRNA EEF1A2的敲低效果

    *P < 0.05, **P < 0.01. ***P < 0.001

    Figure  3.  Western blotting results confirmed the EEF1A2-knockdown effect using shRNA in (a) SKBR3 and (b) MDA-MB-453.

    图  4  敲低EEF1A2增强Lapatinib对SKBR3和MDA-MB-453细胞增殖能力的抑制作用。

    *P < 0.05, **P < 0.01, ***P < 0.001

    Figure  4.  EEF1A2-knockdown enhanced the inhibitions on proliferation of SKBR3 and MDA-MB-453 cells induced by lapatinib.

    图  5  敲低EEF1A2增强Lapatinib对SKBR3和MDA-MB-453细胞迁移、侵袭能力的抑制作用

    *P < 0.05, **P < 0.01, ***P < 0.001

    Figure  5.  EEF1A2-knockdown enhanced the inhibitions on migration and invasion of SKBR3 and MDA-MB-453 cells induced by lapatinib

    图  6  敲低EEF1A2增强Lapatinib对SKBR3和MDA-MB-453细胞促凋亡作用

    *P < 0.05, **P < 0.01, ***P < 0.001

    Figure  6.  EEF1A2-knockdown enhanced the promotion on apoptosis of SKBR3 and MDA-MB-453 cells induced by lapatinib

    图  7  拉帕替尼对SKBR3和MDA-MB-453细胞中EEF1A2蛋白表达无显著影响

    *P < 0.05, **P < 0.01, ***P < 0.001

    Figure  7.  Lapatinib had no noticeable effect on EEF1A2 expressions in SKBR3 and MDA-MB-453 cells

    图  8  SKBR3和MDA-MB-453细胞中敲低EEF1A2显著增强拉帕替尼对HER2表达的抑制作用

    *P < 0.05, **P < 0.01, ***P < 0.001

    Figure  8.  EEF1A2-knockdown enhanced the inhibition to HER2 expressions induced by lapatinib in SKBR3 and MDA-MB-453 cells

    图  9  SKBR3和MDA-MB-453细胞中敲低EEF1A2显著增强拉帕替尼对AKT磷酸化的抑制作用

    *P < 0.05, **P < 0.01, ***P < 0.001

    Figure  9.  EEF1A2-knockdown enhanced the inhibition to AKT phosphorylation induced by lapatinib in SKBR3 and MDA-MB-453 cells

    图  10  HER2阳性乳腺癌细胞中EEF1A2作用机制简图

    Figure  10.  A brief summary of mechanism involving EEF1A2 for HER2-positive breast cancer cells.

    表  1  引物退火反应体系

    Table  1.   Primer annealing reaction system.

    ComponentsV/μL
    Nuclear-Free water40 μL
    Annealing Buffer for DNA oligo20 μL
    Forward strand(50 nmol/L)20 μL
    Reverse strand(50 nmol/L)20 μL
    Total Volume100 μL
    下载: 导出CSV

    表  2  酶切反应体系

    Table  2.   Enzyme digestion system

    ComponentsV/μl
    pSilencerTM2.1-U616 μL
    BamHⅠ1 μL
    Hind Ⅲ1 μL
    Hind Ⅲ2 μL
    Total Volume20 μL
    下载: 导出CSV

    表  3  Lapatinib作用各组SKBR3和MDA-MB-453细胞48 h的IC50值

    Table  3.   The IC50 values of lapatinib to SKBR3 and MDA-MB-453 cells for 48 hours.

    Cell linesIC50/(μmol·L−1)
    shCtrlshEEF1A2
    SKBR35.621 ± 0.5403.665 ± 0.345
    MDA-MB-4533.078 ± 0.3622.349 ± 0.311
    下载: 导出CSV
  • [1] TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012[J]. CA: A Cancer Journal for Clinicians, 2015, 65(2): 87-108. doi: 10.3322/caac.21262
    [2] MOASSER M. The oncogene HER2: Its signaling and transforming functions and its role in human cancer pathogenesis[J]. Oncogene, 2007, 26(45): 6469-6487. doi: 10.1038/sj.onc.1210477
    [3] FABIAN M A, BIGGS W H, TREIBER D K, et al. A small molecule-kinase interaction map for clinical kinase inhibitors[J]. Nature Biotechnology, 2005, 23(3): 329-36. doi: 10.1038/nbt1068
    [4] SPECTOR N L, XIA W L, BURRIS H, et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies[J]. Journal of Clinical Oncology, 2005, 23(11): 2502-2512. doi: 10.1200/JCO.2005.12.157
    [5] WU X W, SOMLO G, YU Y, et al. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer[J]. Journal of Translational Medicine, 2012, 8, 10-42.
    [6] AKAR U, CHAVES-REYEZ A, BARRIA M, et al. Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells[J]. Autophagy, 2008, 4(5): 669-679. doi: 10.4161/auto.6083
    [7] VOIGTLAENDER M, SCHNEIDER-MERCK T, TREPEL M. Lapatinib[J]. Recent Results in Cancer Research, 2018, 211: 19-44.
    [8] MATTOS-ARRUDA L, CORTES J. Use of pertuzumab for the treatment of HER2-positive metastatic breast cancer[J]. Advances in Therapy, 2013, 30(7): 645-658. doi: 10.1007/s12325-013-0043-2
    [9] ANAND N, MURTHY S, AMANN G, et al. Gene encoding protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer[J]. Nature Genetic, 2002, 31(3): 301-305. doi: 10.1038/ng904
    [10] ABBAS W, KUMAR A, HERBEIN G. The eEF1A proteins: At the crossroads of oncogenesis, apoptosis, and viral infections[J]. Frontiers in Oncology, 2015, 5: 75.
    [11] KULKARNI G, TURBIN D A, AMIRI A, et al. Expression of protein elongation factor eEF1A2 predicts favorable outcome in breast cancer[J]. Breast Cancer Research and Treatment, 2007, 102(1): 31-41. doi: 10.1007/s10549-006-9315-8
    [12] TOMLINSON V A L, NEWBERY H J, WRAY N R, et al. Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours[J]. BMC Cancer, 2005, 5.
    [13] O'BRIEN N A, BROWNE B C, CHOW L, et al. Activated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib[J]. Molecular Cancer Therapeutics, 2010, 9(6): 1489-502. doi: 10.1158/1535-7163.MCT-09-1171
    [14] CANONICI A, IVERS L, CONLON N T, et al. HER-targeted tyrosine kinase inhibitors enhance response to trastuzumab and pertuzumab in HER2-positive breast cancer[J]. Investigational New Drugs, 2019, 37(3): 441-451. doi: 10.1007/s10637-018-0649-y
    [15] YAN Y-Y, BI H, ZHANG W, et al. Downregulation and subcellular distribution of HER2 involved in MDA-MB-453 breast cancer cell apoptosis induced by lapatinib/celastrol combination[J]. Journal of BUON, 2017, 22(3): 644-651.
    [16] MA C D, ZUO W S, WANG X W, et al. Lapatinib inhibits the activation of NF-κB through reducing phosphorylation of IκB-α in breast cancer cells[J]. Oncology Reports, 2013, 29(2): 812-818. doi: 10.3892/or.2012.2159
    [17] WETTERSKOG D, SHIU K-K, CHONG I, MEIJER T, et al. Identification of novel determinants of resistance to lapatinib in ERBB2-amplified cancers[J]. Oncogene, 2014, 33: 966-976. doi: 10.1038/onc.2013.41
    [18] PELLEGRINO R, CALVISI D F, NEUMANN O, et al. EEF1A2 inactivates p53 by way of PI3K/AKT/mTOR-dependent stabilization of MDM4 in hepatocellular carcinoma[J]. Hepatology, 2014, 59(5): 1886-1899. doi: 10.1002/hep.26954
    [19] ARTEAGA C L, ENGELMAN J A. ERBB receptors: From oncogene discovery to basic science to mechanism-based cancer therapeutics[J]. Cancer Cell, 2014, 25(3): 282-303. doi: 10.1016/j.ccr.2014.02.025
    [20] SLAMON D J, GODOLPHIN W, JONES L A, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer[J]. Science, 1989, 244(4905): 707-712. doi: 10.1126/science.2470152
    [21] ENGELMAN J A. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations[J]. Nature Reviews Cancer, 2009, 9(8): 550-562. doi: 10.1038/nrc2664
    [22] PECORARI L, MARIN O, SILVESTRI O, et al. Elongation Factor 1 alpha interacts with phospho-Akt in breast cancer cells and regulates their proliferation, survival and motility[J]. Molecular Cancer, 2009, 8: 58. doi: 10.1186/1476-4598-8-58
    [23] AMIRI A, NOEI F, JEGANATHAN S, et al. eEF1A2 activates Akt and stimulates Akt-dependent actin remodeling, invasion and migration[J]. Oncogene, 2006, 26(21): 3027-3040.
    [24] LONGERICH T. EEF1A2 inhibits the p53 function in hepatocellular carcinoma via PI3K/AKT/mTOR-dependent stabilization of MDM4[J]. Pathologe, 2014, 35(S2): 177-184. doi: 10.1007/s00292-014-2007-y
    [25] LOSADA A, MUNOZ-ALONSO M J, GARCIA C, et al. Translation elongation factor eEF1A2 is a novel anticancer target for the marine natural product plitidepsin[J]. Scientific Reports, 2016, 6: 35100. doi: 10.1038/srep35100
    [26] KANDIOLER-ECKERSBERGER D, LUDWIG C, RUDAS M, et al. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients[J]. Clinical Cancer Research, 2000, 6(1): 50-56.
    [27] DI LEO A, ISOLA J. Topoisomerase II alpha as a marker predicting the efficacy of anthracyclines in breast cancer: are we at the end of the beginning?[J]. Clinical Breast Cancer, 2003, 4(3): 179-186.
    [28] SUBIK K, LEE J-F, BAXTER L, et al. The expression patterns of eR, pR, HeR2, cK5/6, eGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast cancer cell Lines[J]. Breast Cancer (Auckl), 2010, 20(4): 35-41.
    [29] REXER B N, HAM A-J L, RINEHART C, et al. Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition[J]. Oncogene, 2011, 30(40): 4163-4174. doi: 10.1038/onc.2011.130
    [30] LEISCH M, EGLE A, GREIL R. Plitidepsin: A potential new treatment for relapsed/refractory multiple myeloma[J]. Future Oncology, 2019, 15(2): 109-20. doi: 10.2217/fon-2018-0492
    [31] YAO N, CHEN C Y, WU C Y, et al. Novel flavonoids with antiproliferative activities against breast cancer cells[J]. Journal of Medicinal Chemistry, 2011, 54(13): 4339-4349. doi: 10.1021/jm101440r
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  46
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回