Thermodynamic Analysis and Kinetic Study on the Sucrose-6-acetate Chlorination Process
-
摘要: 蔗糖-6-乙酸酯(S-6-A)氯化制备三氯蔗糖-6-乙酸酯(TGS-6-A)是合成三氯蔗糖(TGS)的关键步骤。首先采用基团贡献法对氯化反应进行了热力学计算,结果表明,在372~389 K的温度范围内,该反应为放热且不可逆反应。同时对目标产物TGS-6-A的水解反应进行了热力学计算,获得了不同温度下的平衡常数计算值,与平衡常数实验值的对比进一步验证了该计算方法的可靠性。通过间歇实验研究了温度对反应速率的影响,建立了氯化连串反应动力学模型。在研究温度范围内其主反应依次生成二氯蔗糖-6-乙酸酯和目标产物TGS-6-A的活化能分别为103.87 kJ/mol、153.87 kJ/mol,副反应生成四氯蔗糖-6-乙酸酯的活化能为87.09 kJ/mol;动力学实验结果表明主反应受温度的影响更大,升高温度并且控制反应时间能有效地提高目标产物TGS-6-A的收率。Abstract: The chlorination of sucrose-6-acetates (S-6-A) to produce sucralose-6-acetate (TGS-6-A) is a key step in the synthesis of sucralose. In this work, the thermodynamic calculation of the chlorination reaction was carried out using the group contribution method. The results show that the reaction is exothermic and irreversible in the temperature range of 372 K to 389 K. The thermodynamic calculations were performed on the hydrolysis reaction of TGS-6-A and the equilibrium constants at different temperatures were obtained, which agree well with the experimental value, confirming the reliability of the calculation methods used in this work. Then the effect of temperature on reaction rate was studied by batch experiments and a chain reaction kinetic model of chlorination reaction was established. The activation energy of the main reactions was calculated as 103.87 kJ·mol−1 and 153.87 kJ·mol−1, respectively, and the activation energy of the side reaction was 87.09 kJ·mol−1. The kinetic experiment results show that the main reaction is more affected by reaction temperature, increasing the temperature and controlling the reaction time can effectively increase the yield of the target product TGS-6-A.
-
表 1 各组分的热力学基团贡献值(Benson)
Table 1. Thermodynamic data of group contribution of each component (Benson method)
Group S-6-A TGS-6-A TGS $ {\Delta }_{\mathrm{f}}{H}_{298,i}^{\mathrm{\Theta }} $/
(kJ·mol−1)$ {S}_{298,i}^{\mathrm{\Theta }} $/
(J·mol−1·k−1)$ {C}_{p,i}^{\mathrm{\Theta }}\left(T\right) $ /(J·mol−1·K−1) 300 K 400 K 500 K 600 K 800 K 1000 K C−(CO)(H)3 1 1 0 −42.29 127.32 25.69 32.24 39.36 45.18 54.51 61.84 CO−(O)(C) 1 1 0 −146.86 20.01 25.00 28.05 30.98 33.58 37.14 39.19 O−(CO)(C) 1 1 0 −185.48 35.13 16.33 15.11 17.54 19.34 20.89 20.18 C−(O)(C)(H)2 3 1 1 −33.91 41.03 20.89 28.68 34.75 39.48 46.52 51.62 C−(O)(C)2(H) 7 6 6 −30.14 −46.05 20.10 27.80 33.91 36.55 41.07 43.54 C−(Cl)(H)(C)2 0 1 1 −62.00 73.70 38.90 41.40 44.00 46.90 58.20 61.10 C−(O)2(C)(H) 1 1 1 −68.24 −48.56 21.19 30.48 37.81 39.40 43.17 45.01 O−(C)2 3 3 3 −99.23 36.34 14.24 15.49 15.49 15.91 18.42 19.26 O−(C)(H) 7 4 5 −158.68 121.71 18.13 18.63 18.63 21.90 25.20 27.67 C−(O)2(C)2 1 1 1 −77.87 −149.85 6.66 16.54 16.54 30.94 31.90 35.50 C−(Cl)(H)2(C) 0 2 2 −69.10 158.30 37.30 44.80 51.50 56.10 64.10 69.90 四氢呋喃 1 1 1 24.70 105.90 −17.80 −19.01 −19.01 −14.86 −12.94 −10.92 四氢吡喃 1 1 1 2.09 78.69 −17.92 −12.73 −12.73 −5.99 −1.21 0.33 氧醚歪曲作用 2 2 2 1.30 − −0.42 −3.73 −3.73 −3.06 −2.51 −0.96 表 2 各组分的热力学数据
Table 2. Thermodynamic data for each component
Component $ {\Delta }_{\mathrm{f}}{H}_{298}^{\mathrm{\Theta }} $/
(kJ·mol−1)$ {S}_{298}^{\mathrm{\Theta }} $/
(J·mol−1·k−1)$ {C}_{p}^{\mathrm{\Theta }} $=C+DT+ET 2+FT 3+JT 4/(J·mol−1·k−1) $ {r}^{2} $ Data sources C D 105 E 107 F 1010 J S-6-A −2212.51 921.24 64.27 1.08 113.21 −25.73 11.95 0.999 calculated TGS-6-A −1838.71 910.39 31.68 1.45 22.33 8.63 4.73 0.999 calculated TGS −1622.76 858.78 −58.78 1.89 166.11 7.24 −1.25 0.999 calculated 表 3 各组分的
$ {\mathrm{\Delta }}_{\mathrm{V}}{H}_{{\rm{b}}} $ ,$ {T}_{{\rm{b}}} $ ,$ {T}_{{\rm{c}}} $ 和$ {\mathrm{\Delta }}_{\mathrm{V}}{H}_{T} $ 的值Table 3.
$ {\mathrm{\Delta }}_{\mathrm{V}}{H}_{{\rm{b}}} $ ,$ {T}_{{\rm{b}}} $ ,$ {T}_{{\rm{c}}} $ and$ {\mathrm{\Delta }}_{\mathrm{V}}{H}_{T} $ of each componentComponent $ {\mathrm{\Delta }}_{\mathrm{V}}{H}_{{\rm{b}}} $/(kJ·mol−1) $ {T}_{{\rm{b}}} $/K $ {T}_{{\rm{c}}} $/K $ {\mathrm{\Delta }}_{\mathrm{V}}{H}_{T} $/(kJ·mol−1) Data sources S-6-A 99.94 863.18 1181.18 177.01(1−T/1181.18)0.38 calculated TGS-6-A 93.83 830.98 1030.61 190.88(1−T/1030.61)0.38 calculated TGS 98.03 825.05 1026.55 181.10(1−T/1026.55)0.38 calculated 表 4 乙酸热力学数据的计算值和文献值的对比
Table 4. Comparison of calculation value and literature value of acetic acid
Parameter Calculation
valueLiterature
valueRelative
deviation %${\Delta }_{{\rm{f}}}{H}_{298}^{\mathrm{\Theta } }$/(kJ·mol−1) −432.40 −432.54 0.03 $ {S}_{298}^{\mathrm{\Theta }} $/(J·mol−1·K−1) 282.69 (ABWY法) 283.47 0.27 ${\mathrm{\Delta } }_{\mathrm{V} }{H}_{{\rm{b}}}$/(kJ·mol−1) 23.70 23.70 0.00 ${T}_{{\rm{b}}}$/K 390.01 391.05 0.26 ${T}_{{\rm{c}}}$/K 586.26 590.7 0.75 $ {C}_{p} $(298 K)/(J·mol−1·K−1) 66.91 63.62 5.15 $ {C}_{p} $ (400 K)/(J·mol−1·K−1) 81.14 79.06 2.63 $ {C}_{p} $ (500 K)/(J·mol−1·K−1) 94.62 93.85 0.82 $ {C}_{p} $ (600 K)/(J·mol−1·K−1) 105.3 106.75 1.36 $ {C}_{p} $ (800 K)/(J·mol−1·K−1) 121.75 125.34 2.86 $ {C}_{p} $ (1000 K)/(J·mol−1·K−1) 133.48 138.74 3.79 表 5 氯化反应不同温度下的
$ {\mathrm{\Delta }}_{{\rm{r}}}{H}^{\mathrm{\Theta }} $ ,$ {\mathrm{\Delta }}_{{\rm{r}}}{S}^{\mathrm{\Theta }} $ ,$ {\mathrm{\Delta }}_{{\rm{r}}}{G}^{\mathrm{\Theta }} $ ,$ \mathrm{l}\mathrm{n}{K}^{\mathrm{\Theta }} $ 和$ {K}^{\mathrm{\Theta }} $ Table 5.
$ {\mathrm{\Delta }}_{{\rm{r}}}{H}^{\mathrm{\Theta }} $ ,$ {\mathrm{\Delta }}_{{\rm{r}}}{S}^{\mathrm{\Theta }} $ ,$ {\mathrm{\Delta }}_{{\rm{r}}}{G}^{\mathrm{\Theta }} $ ,$ \mathrm{l}\mathrm{n}{K}^{\mathrm{\Theta }} $ and$ {K}^{\mathrm{\Theta }} $ of chlorination reaction at different temperaturesT/K $ {\mathrm{\Delta }}_{{\rm{r}}}{H}^{\mathrm{\Theta }} $/
(kJ·mol−1)$ {\mathrm{\Delta }}_{{\rm{r}}}{S}^{\mathrm{\Theta }} $/
(J·mol−1·K−1)$ {\mathrm{\Delta }}_{{\rm{r}}}{G}^{\mathrm{\Theta }} $/
(kJ·mol−1)$ \mathrm{l}\mathrm{n}{K}^{\mathrm{\Theta }} $ $ {K}^{\mathrm{\Theta }} $ 298 −67.31 665.86 −265.73 107.26 3.80×1046 310 −67.08 650.42 −268.70 104.26 1.89×1045 320 −66.89 637.53 −270.90 101.82 1.67×1044 330 −66.72 624.65 −272.85 99.45 1.55×1043 340 −66.55 611.76 −274.55 97.12 1.52×1042 350 −66.39 598.89 −276.00 94.85 1.56×1041 360 −66.24 586.03 −277.21 92.62 1.67×1040 370 −66.09 573.20 −278.18 90.43 1.87×1039 380 −65.96 560.39 −278.90 88.28 2.18×1038 390 −65.83 547.60 −279.39 86.17 2.64×1037 400 −65.71 534.86 −279.65 84.09 3.31×1036 表 6 水解反应不同温度下的
$ {\mathrm{\Delta }}_{{\rm{r}}}{H}^{\mathrm{\Theta }} $ ,$ {\mathrm{\Delta }}_{{\rm{r}}}{S}^{\mathrm{\Theta }} $ ,$ {\mathrm{\Delta }}_{{\rm{r}}}{G}^{\mathrm{\Theta }} $ ,$ \mathrm{l}\mathrm{n}{K}^{\mathrm{\Theta }} $ 和$ {K}^{\mathrm{\Theta }} $ Table 6.
$ {\mathrm{\Delta }}_{{\rm{r}}}{H}^{\mathrm{\Theta }} $ ,$ {\mathrm{\Delta }}_{{\rm{r}}}{S}^{\mathrm{\Theta }} $ ,$ {\mathrm{\Delta }}_{{\rm{r}}}{G}^{\mathrm{\Theta }} $ ,$ \mathrm{l}\mathrm{n}{K}^{\mathrm{\Theta }} $ and$ {K}^{\mathrm{\Theta }} $ of hydrolysis reaction at different temperaturesT/K $ {\mathrm{\Delta }}_{{\rm{r}}}{H}^{\mathrm{\Theta }} $/
(kJ·mol−1)$ {\mathrm{\Delta }}_{{\rm{r}}}{S}^{\mathrm{\Theta }} $/
(J·mol−1·K−1)$ {\mathrm{\Delta }}_{{\rm{r}}}{G}^{\mathrm{\Theta }} $
(kJ·mol−1)$ \mathrm{l}\mathrm{n}{K}^{\mathrm{\Theta }} $ $ {K}^{\mathrm{\Theta }} $ 298 12.22 48.45 −2.22 0.89 2.45 308 13.44 51.68 −2.47 0.97 2.63 318 14.68 54.85 −2.76 1.04 2.84 328 15.94 57.95 −3.07 1.13 3.08 338 17.21 61.00 −3.41 1.21 3.36 348 18.49 63.98 −3.77 1.30 3.68 358 19.79 66.91 −4.16 1.40 4.05 368 21.11 69.79 −4.57 1.49 4.46 378 22.44 72.61 −5.01 1.59 4.92 388 23.79 75.39 −5.46 1.69 5.44 表 7 反应速率常数和置信度为95%时对应的置信区间
Table 7. Estimated reaction rate constants and corresponding confidence intervals with the confidence level of 95%
T/K $ {k}_{1} $ $ {k}_{2} $ $ {k}_{3} $ 372 0.1677±0.0318 0.1142±0.0136 0.0323±0.0233 379 0.3128±0.0649 0.3560±0.0295 0.0548±0.0251 386 0.5357±0.0787 0.8342±0.0465 0.0814±0.0174 389 0.7257±0.1528 0.9259±0.0727 0.1165±0.0315 表 8 Arrhenius拟合各反应过程的指前因子和活化能
Table 8. Arrhenius fitting of the pre-factor and activation energy for each reaction
Reaction number $ \mathrm{l}\mathrm{n}{k}_{0} $ $E_\mathrm{a}$ (kJ·mol−1) $ {r}^{2} $ 1 31.78 103.87 0.997 $ 2 $ 47.65 153.87 0.980 $ 3 $ 24.70 87.09 0.987 符号说明 $ {\rm{A,B,P,S}} $ ——各反应组分 $ {C},{D},{E},{F},{J} $ ——定压比热容多项式参数 $ {C}_{p} $ ——定压比热容 $ E_\mathrm{a} $ ——活化能,kJ/mol $ \Delta G $ ——Gibbs自由能变,kJ/mol $ \Delta H $ ——焓变,kJ/mol $ K $ ——反应平衡常数 $ {k}_{0} $ ——反应速率指前因子,h−1 $ k $ ——反应速率常数,h−1 $ R $ ——摩尔气体常数 $ {r}^{2} $ ——相关系数 $ \Delta S $ ——熵变,J/(mol·K) $ T $ ——温度,K $ \sigma $ ——总对称数 $ \eta $ ——光学异构体数 上角标 $ \mathrm{\Theta } $ ——标准态 下角标 ${\rm{ b}} $ ——常压沸点 $ {\rm{c}} $ ——临界点 $ {\rm{f}} $ ——生成态 $ \mathrm{g} $ ——气态 $ i $ ——组分 $ {\rm{l }}$ ——液态 $ {{p}} $ ——压力 $ {\rm{r}} $ ——反应态 $ \mathrm{V} $ ——蒸发态 -
[1] HOUNGH L, PHADNIS S P, KHAN R A, et al. Sweeteners[P]. US4435440, 1984-03-06. [2] 吴红英, 鲍宗必, 张治国, 等. 甜味剂三氯蔗糖合成法的最新进展[J]. 化工进展, 2016, 35(1): 227-238. [3] STEPHAN G W, PAMELA K B. Sensory characteristics of sucralose and other high intensity sweeteners[J]. Journal of Food Science, 1992, 57(4): 1014-1019. doi: 10.1111/j.1365-2621.1992.tb14345.x [4] HUTCHINSON S A, HO G S, HO C. Stability and degradation of the high‐intensity sweeteners: Aspartame, alitame, and sucralose[J]. Food Reviews International, 1999, 15(2): 249-261. doi: 10.1080/87559129909541189 [5] QUENEAU Y, FITREMANN J, TROMBOTTO S. The chemistry of unprotected sucrose: the selectivity issue[J]. Comptes Rendus Chimie, 2004, 7(2): 177-188. doi: 10.1016/j.crci.2003.10.014 [6] HO D L, WANG Z H. Process for the preparation of sucrose-6-ester by esterification in the presence of solid superacid catalyst[P]. WO2008052077, 2008-05-02. [7] 罗伟. 蔗糖-6-乙酸酯的氯代过程研究[D]. 福州: 福州大学, 2017. [8] XU S J. Novel chlorination process for preparing sucralose[P]. WO2008150379, 2008-12-11. [9] WANG Z Y. Method of preparing sucralose-6-ester by catalysis and chlorination of phase transfer catalyst[P]. US2013102773, 2013-04-25. [10] THOMAS E, HALIL A. Chlorination of sucrose-6-esters[P]. WO2015092374, 2015-06-25. [11] 卢富国. 单酯法合成甜味剂4, 1’, 6’-三氯-4, 1’, 6’-三脱氧半乳型蔗糖的研究[D]. 南京: 南京理工大学, 2010. [12] 冷一欣, 刘晓成, 苏继光, 等. 三氯蔗糖-6-乙酸酯的合成及其工艺优化[J]. 食品科学, 2013, 34(22): 106-110. [13] NAVIA J L, WALKUP R E, NEIDITCH D S. Recovery of sucralose intermediates[P]. US5530106, 1996-06-25. [14] 杨幸川, 位根磊, 徐丽, 等. 己二酸二甲酯加氢反应热力学分析及动力学研究[J]. 化工学报, 2021, 72(5): 2465-2473. [15] 刘宏晓, 孙伟振, 赵玲. TOME环化反应热力学分析及反应动力学研究[J]. 化工学报, 2020, 71(2): 500-506. [16] 吕全明, 孙伟振, 赵玲. 连四甲苯液相氧化过程热力学分析及动力学模拟[J]. 化工学报, 2021, 72(2): 1009-1017+1205. [17] 王修纲, 沈阳, 田冰虎, 等. 环丁烯砜合成反应的基团贡献法热力学分析[J]. 化工学报, 2016, 67(4): 1103-1109. [18] 罗雄, 牛谦, 宋国强, 等. 1, 3-二氯-2-丙醇脱氯化氢制备环氧氯丙烷热力学分析[J]. 精细石油化工, 2015, 32(5): 52-55. doi: 10.3969/j.issn.1003-9384.2015.05.012 [19] 徐鹏, 程振民, 陈建华, 等. 3, 6-二氯-2-甲氧基苯甲酸甲酯合成的热力学计算与分析[J]. 华东理工大学学报(自然科学版), 2011, 37(1): 1-7. doi: 10.3969/j.issn.1006-3080.2011.01.001 [20] SUN W Z, SUN J H, XU Z M, et al. Experimental study and modeling of homogenous catalytic oxidation of m-xylene to isophthalic acid[J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3293-3298. [21] 王鹏, 李涛, 张海涛, 等. 基于钯炭催化剂的苯酚加氢反应及其本征动力学[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 255-261. [22] 蒋文斌, 纪利俊, 陈葵, 等. 聚乙烯醇与戊二醛的交联反应动力学[J]. 华东理工大学学报(自然科学版), 2016, 42(5): 625-629. [23] 孙伟振, 杨洋, 周兴贵, 等. 对甲基苯甲酸液相催化氧化动力学[J]. 化学反应工程与工艺, 2007(1): 8-12. doi: 10.3969/j.issn.1001-7631.2007.01.002 [24] 李迪, 孙伟振, 奚桢浩, 等. 混合丁烯/异丁烷硫酸烷基化反应动力学[J]. 化工学报, 2015, 66(2): 584-590. [25] 袁渭康, 王静康, 费维扬, 等. 化学工程手册 [M]. 北京: 化学工业出版社, 2019. [26] 叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 北京: 冶金工业出版社, 2002. [27] 伊赫桑·巴伦, 程乃良, 牛四通, 等. 纯物质热化学数据手册[M]. 北京: 科学出版社, 2003. [28] 董新法, 方利国, 陈砺. 物性估算原理及计算机计算[M]. 北京: 化学工业出版社, 2006. [29] WATSON K M. Thermodynamics of the liquid state: Generalized prediction of propertizes[J]. Industrial & Engineering Chemistry, 1943, 35(4): 398-406. [30] 马沛生. 化工数据[M]. 北京: 中国石化出版社, 2003. [31] 冷一欣, 刘晓成, 苏继光, 等. 一种合成三氯蔗糖-6-乙酯的新方法[J]. 化工进展, 2013, 32(5): 1133-1139. -