Construction of Quinoline-malononitrile Fluorescent Microspheres for the Detection of SAA via Fluorescent Immunochromatography
-
摘要: 基于聚集诱导发光(AIE)喹啉腈(QM)染料的衍生物QM-OH制备了乳胶荧光微球QM-OH@PS-COOH(羧基聚苯乙烯),通过扫描电子显微镜等表征仪器研究了微球的形貌结构,并进一步将该荧光微球应用于荧光免疫层析法检测中,实现了对临床样本中血清淀粉样蛋白A(SAA)含量变化的灵敏检测。研究结果表明:QM-OH@PS-COOH荧光微球大小均一、形状规整,与市售荧光微球对比,其密度、固含量、羧基含量基本一致;该荧光微球体系不仅可以定性区分炎症感染,而且能对SAA含量进行定量分析,实现了对炎症感染的有效评估和监控。因此,基于QM-OH@PS-COOH的检测平台可用于早期疾病检测的筛查,特别是用于即时检测领域中的自我检测。Abstract: Serum amyloid A (SAA) is an acute-phase protein mainly produced by the liver in response to proinflammatory cytokines. SAA genes and proteins are significantly activated during the acute phase response, which comprises a number of phenomena that occur in the presence of inflammation and infection, increased temperature and hormonal and metabolic alterations. Therefore SAA is a sensitive indicator of inflammation in the early stage of infectious diseases, which is important for diagnosis, evaluation, monitoring and treatment of inflammation. Fluorescent immunochromatography is one of the most popular strategies for point-of-care testing (POCT), which is capable of rapid screening for disease detection. Fluorescent microspheres QM-OH@PS-COOH were obtained from aggregation-induced emission (AIE) quinoline-malononitrile (QM) derivatives QM-OH. The morphology and structure of these QM fluorescent microspheres were characterized by scanning electron microscopy et al. Finally, these fluorescent microspheres were utilized to detect for SAA concertation in clinical samples via fluorescent immunochromatography. The results showed that QM-OH@PS-COOH has uniform sizes with regular shapes. Compared with commercial fluorescent microspheres, these AIE microspheres had similar density, solid content and carboxyl content. The QM-OH@PS-COOH system exhibited the detection of SAA with high sensitivity in clinical samples via fluorescent immunochromatography. Thus, this new type of QM fluorescent microspheres could be employed as an important tool for clinical diagnosis, enabling quantitatively analyze and monitor the concentration of SAA during the inflammation process. Therefore, we believe that these detection platforms based on QM-OH@PS-COOH can serve as a screening platform for early disease detection, especially self-testing in POCT.
-
图 6 (a)MAYA荧光免疫定量分析仪;(b)日光灯下,阴性、阳性低值、阳性高值样本的检测条;(c)荧光灯下,阴性、阳性低值、阳性高值样本的检测条
Figure 6. (a) MAYA fluorescence immunoquantitative analyzer; (b) Test strips for negative, low positive and high positive samples under fluorescent lamps; (c) Test strips for negative, low positive and high positive samples under fluorescent lamps
表 1 SAA质控品定标的数据
Table 1. SAA quality control product calibration data
ρ(SAA) /(mg·L−1) Fluorescene/(a.u.) Data 1 Data 2 Data average A Line B Line A Line B Line A Line B Line 0 1145 9 1150 9 1147.5 9 6.75 1260 109 1262 109 1261 109 13.5 1355 193 1350 187 1352.5 190 27 1540 354 1536 345 1538 349.5 54 1881 638 1899 662 1890 650 108 2638 1298 2619 1275 2628.5 1286.5 216 3627 2022 3665 2038 3646 2030 表 2 本文和龙华医院测试临床样本SAA测值比较
Table 2. Comparation of SAA value between this study and Longhua Hospital
Sample ρ(SAA)/(mg·L−1) This study Longhua Hospital Deviation/% 1 1.61 1.72 −6.40 2 2.30 2.13 7.98 3 3.47 3.75 −7.47 4 3.73 3.98 −6.28 5 11.88 10.38 14.45 6 22.58 20.89 8.09 7 23.73 26.63 −10.89 8 41.49 36.25 14.46 9 59.72 53.76 11.09 10 115.14 100.52 14.54 -
[1] LUO J, XIE Z, LAM J W, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chemical Communications, 2001, 18: 1740-1741. [2] QIAN J, TANG B Z. AIE luminogens for bioimaging and theranostics: From organelles to animals[J]. Chemistry, 2017, 3(1): 56-91. doi: 10.1016/j.chempr.2017.05.010 [3] GU B, YONG K T, LIU B. Strategies to overcome the limitations of AIEgens in biomedical applications[J]. Small Methods, 2018, 2(9): 1700392. doi: 10.1002/smtd.201700392 [4] QI J, SUN C, ZEBIBULA A, et al. Real-time and high resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region[J]. Advanced Materials, 2018, 30(12): 1706856. doi: 10.1002/adma.201706856 [5] ZHANG Q, Yu P, Fan Y, et al. Bright and stable NIR-II J-Aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging[J]. Angewandte Chemie International Edition, 2021, 133(8): 4013-4019. [6] CHEN Y, Zhang W, Zhao Z, et al. An easily accessible ionic aggregation-induced emission luminogen with hydrogen-bonding-switchable emission and wash-free imaging ability[J]. Angewandte Chemie International Edition, 2018, 57(18): 5011-5015. doi: 10.1002/anie.201800772 [7] NIU G, ZHANG R, SHI X, et al. AIE luminogens as fluorescent bioprobes[J]. TrAC Trends in Analytical Chemistry, 2020, 123: 115796. [8] WANG H, CHEN X, QI Y, et al. Aggregation-induced emission (AIE)-guided dynamic assembly for disease imaging and therapy[J]. Advanced Drug Delivery Reviews, 2021, 179: 114028. [9] MEI J, HUANG Y, TIAN H. Progress and trends in AIE-based bioprobes: a brief overview[J]. ACS Appliaed Materials & Interfaces, 2018, 10(15): 12217-12261. [10] MAO L, LIU Y, YANG S, et al. Recent advances and progress of fluorescent bio-/chemosensors based on aggregation-induced emission molecules[J]. Dyes and Pigments, 2019, 162(3): 611-623. [11] LIU S, FENG G, TANG B Z, et al. Recent advances of AIE light-up probes for photodynamic therapy[J]. Chemical Science, 2021, 12: 6488-6506. [12] ALAM P, LEUNG N L C, ZHANG J, et al. AIE-based luminescence probes for metal ion detection[J]. Coordination Chemistry Reviews, 2021, 429: 213693. [13] GRONDMAN I, PIRVU A, RIZA A, et al. Biomarkers of inflammation and the etiology of sepsis[J]. Biochemical Society Transactions, 2020, 48(1): 1-14. doi: 10.1042/BST20190029 [14] CHANNAPPANAVAR R, PERLMAN S. Evaluation of activation and inflammatory activity of myeloid cells during pathogenic human coronavirus infection[J]. MERS Coronavirus, 2020, 2099: 195-204. [15] KIM S W, CHO I H, LIM G S, et al. Biochemical-immunological hybrid biosensor based on two-dimensional chromatography for on-site sepsis diagnosis[J]. Biosensors & Bioelectronics, 2017, 98: 7-14. [16] SHEN H, WANG J, LIU H, et al. Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition[J]. ACS Appliaed Materials & Interfaces, 2016, 8(30): 19371-19378. [17] YANG K, LI H Z, ZHU X, et al. Rapid antibiotic susceptibility testing of pathogenic bacteria using heavy-water-labeled single-cell raman spectroscopy in clinical samples[J]. Analytical Chemistry, 2019, 91(9): 6296-6303. doi: 10.1021/acs.analchem.9b01064 [18] KIM H, LEE J U, SONG S, et al. A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer's disease biomarker [J]. Biosensors & Bioelectronics, 2018, 101: 96-102. [19] GILLMORE J D, LOVAT L B, PERSEY M R, et al. Amyloid load and clinical outcome in AA amyloidosis in relation to circulating concentration of serum amyloid A protein[J]. Lancet, 2001, 358: 24-29. [20] TAKASE H, TANAKA M, MIYAGAWA S, et al. Effect of amino acid variations in the central region of human serum amyloid A on the amyloidogenic properties[J]. Biochemical and Biophysical Research Communications, 2014, 444(1): 92-97. doi: 10.1016/j.bbrc.2014.01.029 [21] SACK G H. Serum amyloid A: A review [J]. Molecular Medicine, 2018, 24: 46. [22] BANG Y J, HU Z , LI Y, et al. Serum amyloid A delivers retinol to intestinal myeloid cells to promote adaptive immunity[J]. Science, 2021, 373: 6561. [23] PIERI M, CIOTTI M, NUCCETELLI M, et al. Serum amyloid A protein as a useful biomarker to predict COVID-19 patients severity and prognosis[J]. International Immunopharmacology, 2021, 95: 107512. [24] 中国妇幼保健协会临床诊断与实验医学分会. SAA 单独和与 CRP 联合检测在儿童感染性疾病中的应用专家共识[J]. 检验医学, 2021, 36(7): 1673-8640. [25] LV Y J, HU Q L, HUANG R, et al. The diagnostic and therapeutic value of the detection of serum amyloid A and C-reactive protein in infants with rotavirus diarrhea[J]. International Journal of General Medicine, 2021, 14: 3611-3617. [26] LIU Q, LI Y, YANG F, et al. Distribution of serum amyloid A and establishment of reference intervals in healthy adults[J]. Journal of Clinical Laboratoty Analysis, 2020, 34(4): e23120. [27] SUPIANTO M, LEE S H, JHUNG S H, et al. Fluorescent paper strip immunoassay with carbon nanodots@silica for determination of human serum amyloid A1[J]. Microchimica Acta, 2021, 188: 386. [28] SMOLE U, GOUR N, PHELAN J, et al. Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity[J]. Nature Immunology, 2020, 21: 756-765. [29] SONG C, CHENG K, GUO J, et al. Combined detection of C-reactive protein and serum smyloid A based on up-conversion luminescent system for internet of medical things application[J]. IEEE Transactions on Nanotechnology, 2021, 20: 708-714. [30] 黄存存, 晏琦帆. 基于萘酸酐的水溶性荧光探针: 合成以及在细胞成像中的应用[J]. 华东理工大学学报(自然科学版), 2021, 47(5): 569-576. [31] GUO Z, SHAO A, ZHU W H. Long wavelength AIEgen of quinoline-malononitrile[J]. Journal of Materials Chemistry C, 2016, 4(14): 2640-2646. doi: 10.1039/C5TC03369A [32] GUO Z, YAN C, ZHU W H. High-performance quinoline-malononitrile core as a building block for the diversity-oriented synthesis of AIEgens[J]. Angewandte Chemie International Edition, 2020, 59(25): 9812-9825. doi: 10.1002/anie.201913249 [33] 张洪涛, 吕睿, 陈敏. 分散共聚合制备PSt-AA-EGDMA功能性单分散微米级交联微球的研究[J]. 高等学校化学学报, 2004, 25(2): 366-371. -