Fluorescence Spectroscopic Investigation of the Interaction of Single-walled Carbon Nanotubes with Bovine Hemoglobin
-
摘要: 选取了SWCNTs及两种分离后的单一手性单壁碳纳米管((6,5)-SWCNT,(8,3)-SWCNT)分别与牛血红蛋白(BHb)结合,通过荧光光谱法分析SWCNTs与BHb的相互作用。结果表明,SWCNTs对BHb的荧光猝灭是通过动态猝灭与静态猝灭结合的机制,单一手性(6,5)-SWCNT和(8,3)-SWCNT对BHb的荧光猝灭是静态猝灭的机制;BHb与3种SWCNT的结合常数大小顺序如下:SWCNTs>(6,5)-SWCNT>(8,3)-SWCNT;范德华力、氢键和疏水作用是相互作用中主要作用力。Abstract: Single-walled carbon nanotubes (SWCNTs) can combine with proteins in organisms, creating potential biosafety risks. In this paper, SWCNTs and two separated single-chiral single-walled carbon nanotubes ((6,5)-SWCNT, (8,3)-SWCNT) were combined with Bovine hemoglobin (BHb) respectively, and SWCNTs interaction with BHb were analyzed by fluorescence spectroscopy. The results showed that the fluorescence quenching of BHb by SWCNTs was resulted from the combination of dynamic quenching and static quenching. The fluorescence quenching of BHb by single chiral (6,5)-SWCNT and (8,3)-SWCNT was static quenching. The order of the binding constants of BHb and different SWCNTs was as follows: SWCNTs>(6,5)-SWCNT>(8,3)-SWCNT. Van der Waals force, hydrogen bond and hydrophobic interaction were the main forces in the interaction. The result of this article will assist the revealing of the potential biosafety risks of SWCNTs.
-
Key words:
- Single-walled carbon nanotubes /
- Bovine hemoglobin /
- Interaction /
- Fluorescence spectrum /
- Quenching
-
表 1 在不同温度下SWCNT-BHb系统的Stern-Volmer猝灭常数
Table 1. Stern-Volmer quenching constants of different SWCNT-BHb systems at different temperatures
T/K KSV/
(103 L·mol-1)Kq/
[1012 L/(mol·s)]R2 V/
(103 L·mol-1)K/
(103 L·mol-1)R2 SWCNTs 298 13.05 2.58 0.993 9.82 5.46 0.994 308 10.39 2.05 0.997 8.13 5.40 0.989 318 9.80 1.94 0.997 7.62 5.47 0.982 328 8.60 1.70 0.995 6.78 4.94 0.988 (6,5)-
SWCNT298 5.95 1.18 0.983 / / / 308 5.93 1.17 0.983 / / / 318 5.56 1.10 0.983 / / / 328 5.32 1.05 0.981 / / / (8,3)-
SWCNT298 5.44 1.08 0.964 / / / 308 5.24 1.04 0.993 / / / 318 4.56 0.90 0.992 / / / 328 4.23 0.84 0.991 / / / 表 2 在不同温度下 SWCNT-BHb 系统的结合常数和结合位点数
Table 2. Binding constants and number of binding sites for different SWCNT-BHb systems at different temperatures
T/K KA/(L·mol-1) n R2 SWCNTs 298 1.39×106 1.48 0.986 308 1.96×105 1.30 0.976 318 7.71×104 1.20 0.956 328 2.50×104 1.10 0.961 (6,5)-SWCNT 298 7.93×102 0.83 0.979 308 1.71×103 0.90 0.978 318 2.49×103 0.93 0.980 328 3.65×103 0.92 0.975 (8,3)-SWCNT 298 1.03×102 0.67 0.978 308 5.94×102 0.82 0.988 318 4.81×103 1.00 0.992 328 2.49×104 1.14 0.986 表 3 SWCNT与BHb相互作用的热力学参数
Table 3. Thermodynamic parameters of the interaction between SWCNTs and BHb
∆H/(kJ·mol-1) ∆G/(kJ·mol-1) ∆S/(J·mol-1·K-1) R2 SWCNTs −105.93 −34.50 −239.69 0.968 −105.93 −32.10 −239.69 0.968 −105.93 −29.71 −239.69 0.968 −105.93 −27.31 −239.69 0.968 (6,5)−SWCNT 40.46 −16.78 192.07 0.960 40.46 −18.70 192.07 0.960 40.46 −20.62 192.07 0.960 40.46 −22.54 192.07 0.960 (8,3)−SWCNT 150.73 −11.31 543.77 0.997 150.73 −16.75 543.77 0.997 150.73 −22.18 543.77 0.997 150.73 −27.62 543.77 0.997 -
[1] ODOM T W, HUANG J L, KIM P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes[J]. Nature, 1998, 391(6662): 62-64. doi: 10.1038/34145 [2] RUOFF R S, DONG Q, LIU W K. Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements[J]. Comptes Rendus Physique, 2003, 4(9): 993-1008. doi: 10.1016/j.crhy.2003.08.001 [3] RUOFF R S. Carbon nanotubes | | Mechanical and thermal properties of carbon nanotubes[J], 1996: 143-148. [4] BACHILO S M, STRANO M S, KITTRELL C, et al. Structure-assigned optical spectra of single-walled carbon nanotubes[J]. Science, 2002, 298(5602): 2361-2366. doi: 10.1126/science.1078727 [5] SK A, BS B, TCJ A. Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A dft study - sciencedirect[J]. Journal of Molecular Liquids, 2020: 322. [6] ZHAO Z, MA R, GUO Z R, et al. Single-walled carbon nanotubes as drug carrier loaded with moroxydine hydrochloride against infectious spleen and kidney necrosis virus in mandarin fish[J]. Aquaculture, 2021(4): 736469. [7] ZHANG H, WU B, HU W, et al. Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties[J]. Chemical Society Reviews, 2011, 40(3): 1324-1336. doi: 10.1039/B920457C [8] CHEN M, ZHU Y, ZHOU S, et al. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present[J]. Chemosphere, 2018, 206: 255-264. doi: 10.1016/j.chemosphere.2018.05.020 [9] 仲文博, 张敏, 章弘扬, 等. (6, 5)单壁碳纳米管对盐酸阿霉素的载药研究[J]. 华东理工大学学报(自然科学版), 2021, 47(1): 41-47. [10] WANG Y Q, ZHANG H M, JIAN C. Binding of hydroxylated single-walled carbon nanotubes to two hemoproteins, hemoglobin and myoglobin[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2014, 141: 26-35. doi: 10.1016/j.jphotobiol.2014.08.020 [11] FAGAN J A, KHRIPIN C Y, BATISTA C, et al. Isolation of specific small‐diameter single‐wall carbon nanotube species via aqueous two‐phase extraction[J]. Journal of Advanced Materials, 2014, 26(18): 2800-2804. doi: 10.1002/adma.201304873 [12] WEISMAN R B, BACHILO S M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical kataura plot[J]. Nano Letters, 2003, 3(9): 1235-1238. doi: 10.1021/nl034428i [13] SCHOPPLER F, MANN C, HAIN T C, et al. Molar extinction coefficient of single-wall carbon nanotubes[J]. Journal of Physical Chemistry C, 2011, 115(30): 14682-14686. doi: 10.1021/jp205289h [14] DOHARE N, SIDDIQUEE M A, AY M P, et al. Esterase activity and interaction of human hemoglobin with diclofenac sodium: A spectroscopic and molecular docking study[J]. Journal of Molecular Recognition, 2020, 33: e2841. [15] LAKOWICZ, JOSEPHR. Principles of fluorescence spectroscopy[M]. Plenum Press, 1983. [16] 张冰卫, 李博, 夏文水, 等. 用荧光光谱法研究分子间结合常数和结合位点数时的公式选择[J]. 药学进展, 2011, 35(007): 296-303. [17] MANDAL P, GANGULY T. Fluorescence spectroscopic characterization of the interaction of human adult hemoglobin and two isatins, 1-methylisatin and 1-phenylisatin: A comparative study[J]. Journal of Physical Chemistry B, 2009, 113(45): 14904-14913. doi: 10.1021/jp9062115 [18] YANG Z, CHENG X, LI X. Investigation of the interaction between human hemoglobin and five antioxidants by fluorescence spectroscopy and molecular modeling[J]. Journal of the Iranian Chemical Society, 2018, 15: 245-257. doi: 10.1007/s13738-017-1227-5 -