高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

荧光光谱法研究单壁碳纳米管与牛血红蛋白的相互作用

杨兴 谭惠心 章弘扬 胡坪 张敏

杨兴, 谭惠心, 章弘扬, 胡坪, 张敏. 荧光光谱法研究单壁碳纳米管与牛血红蛋白的相互作用[J]. 华东理工大学学报(自然科学版). doi: 10.14135/J.cnki.1006-3080.20211018003
引用本文: 杨兴, 谭惠心, 章弘扬, 胡坪, 张敏. 荧光光谱法研究单壁碳纳米管与牛血红蛋白的相互作用[J]. 华东理工大学学报(自然科学版). doi: 10.14135/J.cnki.1006-3080.20211018003
YANG Xing, TAN Hui-xin, ZHANG Hong-yang, HU Ping, ZHANG Min. Fluorescence Spectroscopic Investigation of the Interaction of Single-walled Carbon Nanotubes with Bovine Hemoglobin[J]. Journal of East China University of Science and Technology. doi: 10.14135/J.cnki.1006-3080.20211018003
Citation: YANG Xing, TAN Hui-xin, ZHANG Hong-yang, HU Ping, ZHANG Min. Fluorescence Spectroscopic Investigation of the Interaction of Single-walled Carbon Nanotubes with Bovine Hemoglobin[J]. Journal of East China University of Science and Technology. doi: 10.14135/J.cnki.1006-3080.20211018003

荧光光谱法研究单壁碳纳米管与牛血红蛋白的相互作用

doi: 10.14135/J.cnki.1006-3080.20211018003
基金项目: 国家自然科学基金(81573397)
详细信息
    作者简介:

    杨兴:杨 兴(1997—),男,江西人,研究生,研究方向为药物分析。E-mail:1500538191@qq.com

  • 中图分类号: O657.3

Fluorescence Spectroscopic Investigation of the Interaction of Single-walled Carbon Nanotubes with Bovine Hemoglobin

  • 摘要: 选取了SWCNTs及两种分离后的单一手性单壁碳纳米管((6,5)-SWCNT,(8,3)-SWCNT)分别与牛血红蛋白(BHb)结合,通过荧光光谱法分析SWCNTs与BHb的相互作用。结果表明,SWCNTs对BHb的荧光猝灭是通过动态猝灭与静态猝灭结合的机制,单一手性(6,5)-SWCNT和(8,3)-SWCNT对BHb的荧光猝灭是静态猝灭的机制;BHb与3种SWCNT的结合常数大小顺序如下:SWCNTs>(6,5)-SWCNT>(8,3)-SWCNT;范德华力、氢键和疏水作用是相互作用中主要作用力。

     

  • 图  1  SWCNTs、(6,5)-SWCNT和(8,3)-SWCNT的紫外-可见-近红外吸收光谱

    Figure  1.  UV-Vis-NIR absorption spectra of SWCNTs, (6,5)-SWCNT and (8,3)-SWCNT

    The inset is digital photograph of (a) SWCNTs dispersion, (b) Separated (6,5)-SWCNT,(c) Separated (8,3)-SWCNT

    图  2  SWCNTs对BHb荧光光谱的影响

    Figure  2.  The effect of SWCNTs on the fluorescence spectra of BHb

    图  3  BHb荧光在四种不同温度和 pH 7.40 下被(a)SWCNTs,(b)(6,5)-SWCNT,(c)(8,3)-SWCNT猝灭的 Stern-Volmer 图

    Figure  3.  Stern-Volmer plot of BHb fluorescence quenched by original SWCNTs (a), (6,5)-SWCNT (b), (8,3)-SWCNT (c) at four different temperatures and pH 7.40

    图  4  不同温度下SWCNTs-BHb的 ln ( F0 / FI ) 与 [ Q ] 关系图

    Figure  4.  The relationship between ln (F0/FI) and [Q] of SWCNTs-BHb at different temperatures

    图  5  不同温度下SWCNTs-BHb的 lg ( F0 F I)/ FI 与 lg [Q]关系图

    Figure  5.  The relationship between lg (F0-FI)/FI and lg [Q] of SWCNTs-BHb at different temperatures

    图  6  不同 SWCNT-BHb 系统的lnKA对1/T的关系图

    Figure  6.  The relationship between lnKA and 1/T of different SWCNT-BHb systems

    表  1  在不同温度下SWCNT-BHb系统的Stern-Volmer猝灭常数

    Table  1.   Stern-Volmer quenching constants of different SWCNT-BHb systems at different temperatures

    T/KKSV/
    (103 L·mol-1)
    Kq/
    [1012 L/(mol·s)]
    R2V/
    (103 L·mol-1)
    K/
    (103 L·mol-1)
    R2
    SWCNTs29813.052.580.9939.825.460.994
    30810.392.050.9978.135.400.989
    3189.801.940.9977.625.470.982
    3288.601.700.9956.784.940.988
    (6,5)-
    SWCNT
    2985.951.180.983///
    3085.931.170.983///
    3185.561.100.983///
    3285.321.050.981///
    (8,3)-
    SWCNT
    2985.441.080.964///
    3085.241.040.993///
    3184.560.900.992///
    3284.230.840.991///
    下载: 导出CSV

    表  2  在不同温度下 SWCNT-BHb 系统的结合常数和结合位点数

    Table  2.   Binding constants and number of binding sites for different SWCNT-BHb systems at different temperatures

    T/KKA/(L·mol-1)nR2
    SWCNTs2981.39×1061.480.986
    3081.96×1051.300.976
    3187.71×1041.200.956
    3282.50×1041.100.961
    (6,5)-SWCNT2987.93×1020.830.979
    3081.71×1030.900.978
    3182.49×1030.930.980
    3283.65×1030.920.975
    (8,3)-SWCNT2981.03×1020.670.978
    3085.94×1020.820.988
    3184.81×1031.000.992
    3282.49×1041.140.986
    下载: 导出CSV

    表  3  SWCNT与BHb相互作用的热力学参数

    Table  3.   Thermodynamic parameters of the interaction between SWCNTs and BHb

    H/(kJ·mol-1)G/(kJ·mol-1)S/(J·mol-1·K-1)R2
    SWCNTs−105.93−34.50−239.690.968
    −105.93−32.10−239.690.968
    −105.93−29.71−239.690.968
    −105.93−27.31−239.690.968
    (6,5)−SWCNT40.46−16.78192.070.960
    40.46−18.70192.070.960
    40.46−20.62192.070.960
    40.46−22.54192.070.960
    (8,3)−SWCNT150.73−11.31543.770.997
    150.73−16.75543.770.997
    150.73−22.18543.770.997
    150.73−27.62543.770.997
    下载: 导出CSV
  • [1] ODOM T W, HUANG J L, KIM P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes[J]. Nature, 1998, 391(6662): 62-64. doi: 10.1038/34145
    [2] RUOFF R S, DONG Q, LIU W K. Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements[J]. Comptes Rendus Physique, 2003, 4(9): 993-1008. doi: 10.1016/j.crhy.2003.08.001
    [3] RUOFF R S. Carbon nanotubes | | Mechanical and thermal properties of carbon nanotubes[J], 1996: 143-148.
    [4] BACHILO S M, STRANO M S, KITTRELL C, et al. Structure-assigned optical spectra of single-walled carbon nanotubes[J]. Science, 2002, 298(5602): 2361-2366. doi: 10.1126/science.1078727
    [5] SK A, BS B, TCJ A. Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A dft study - sciencedirect[J]. Journal of Molecular Liquids, 2020: 322.
    [6] ZHAO Z, MA R, GUO Z R, et al. Single-walled carbon nanotubes as drug carrier loaded with moroxydine hydrochloride against infectious spleen and kidney necrosis virus in mandarin fish[J]. Aquaculture, 2021(4): 736469.
    [7] ZHANG H, WU B, HU W, et al. Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties[J]. Chemical Society Reviews, 2011, 40(3): 1324-1336. doi: 10.1039/B920457C
    [8] CHEN M, ZHU Y, ZHOU S, et al. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present[J]. Chemosphere, 2018, 206: 255-264. doi: 10.1016/j.chemosphere.2018.05.020
    [9] 仲文博, 张敏, 章弘扬, 等. (6, 5)单壁碳纳米管对盐酸阿霉素的载药研究[J]. 华东理工大学学报(自然科学版), 2021, 47(1): 41-47.
    [10] WANG Y Q, ZHANG H M, JIAN C. Binding of hydroxylated single-walled carbon nanotubes to two hemoproteins, hemoglobin and myoglobin[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2014, 141: 26-35. doi: 10.1016/j.jphotobiol.2014.08.020
    [11] FAGAN J A, KHRIPIN C Y, BATISTA C, et al. Isolation of specific small‐diameter single‐wall carbon nanotube species via aqueous two‐phase extraction[J]. Journal of Advanced Materials, 2014, 26(18): 2800-2804. doi: 10.1002/adma.201304873
    [12] WEISMAN R B, BACHILO S M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical kataura plot[J]. Nano Letters, 2003, 3(9): 1235-1238. doi: 10.1021/nl034428i
    [13] SCHOPPLER F, MANN C, HAIN T C, et al. Molar extinction coefficient of single-wall carbon nanotubes[J]. Journal of Physical Chemistry C, 2011, 115(30): 14682-14686. doi: 10.1021/jp205289h
    [14] DOHARE N, SIDDIQUEE M A, AY M P, et al. Esterase activity and interaction of human hemoglobin with diclofenac sodium: A spectroscopic and molecular docking study[J]. Journal of Molecular Recognition, 2020, 33: e2841.
    [15] LAKOWICZ, JOSEPHR. Principles of fluorescence spectroscopy[M]. Plenum Press, 1983.
    [16] 张冰卫, 李博, 夏文水, 等. 用荧光光谱法研究分子间结合常数和结合位点数时的公式选择[J]. 药学进展, 2011, 35(007): 296-303.
    [17] MANDAL P, GANGULY T. Fluorescence spectroscopic characterization of the interaction of human adult hemoglobin and two isatins, 1-methylisatin and 1-phenylisatin: A comparative study[J]. Journal of Physical Chemistry B, 2009, 113(45): 14904-14913. doi: 10.1021/jp9062115
    [18] YANG Z, CHENG X, LI X. Investigation of the interaction between human hemoglobin and five antioxidants by fluorescence spectroscopy and molecular modeling[J]. Journal of the Iranian Chemical Society, 2018, 15: 245-257. doi: 10.1007/s13738-017-1227-5
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 录用日期:  2022-01-11
  • 网络出版日期:  2022-04-12

目录

    /

    返回文章
    返回