[1] LIU Y, NIE C Y, LIU X J, et al.  Review on carbon-based composite materials for capacitive deionization[J]. RSC Advances, 2015, 5(20): 15 205-15 225.   doi: 10.1039/C4RA14447C
[2] JIA B, ZOU L.  Wettability and its influence on graphene nanosheets as electrode material for capacitive deionization[J]. Chemical Physics Letters, 2012, 548: 23-28.   doi: 10.1016/j.cplett.2012.06.016
[3] SUSS M E, PORADA S, SUN X, et al.  Water desalination via capacitive deionization: what is it and what can we expect from it?[J]. Energy & Environmental Science, 2015, 8: 2 296-2 319.
[4] GAO Y, PAN L, LI H, et al.  Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes[J]. Thin Solid Films, 2009, 517(5): 1 616-1 619.   doi: 10.1016/j.tsf.2008.09.065
[5] WAND M, XU X, TANG J, et al.  High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches[J]. Chemical Commol/Lunications, 2017, 53(78): 10 784-10 787.
[6] PORADA S, BORCHARDT L, OSCHATZ M, et al.  Direct prediction of desalination performance of porous carbon electrodes for capacitive deionization[J]. Energy & Environmental Science, 2013, 6(12): 3 700-3 712.
[7] LI H, LU T, PAN L, et al.  Electrosorption behavior of graphene in NaCl solutions[J]. Journal of Materials Chemistry, 2009, 19(37): 6 773-6 779.   doi: 10.1039/b907703k
[8] WAND X Z, LI M G, CHEN Y W, et al.  Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes[J]. Applied Physics Letters, 2006, 89(5): 053127-.   doi: 10.1063/1.2335614
[9] ZHAO S, YAN T, WANG H, et al.  High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization[J]. Applied Surface Science, 2016, 369: 460-.   doi: 10.1016/j.apsusc.2016.02.085
[10] PORADA S, WEINSTEIN L, DASH R, et al.  Water desalination using capacitive deionization with microporous carbon electrodes[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1 194-1 199.
[11] ZHANG R F, ZHANG Y Y, WEI F.  Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and application[J]. Chemical Society Reviews, 2017, 46(12): 3 661-3 715.   doi: 10.1039/C7CS00104E
[12] GAO Y, ZHOU Y S, XIONG W, et al.  Controlled growth of carbon nanotubes on electrodes under different bias polarity[J]. Applied Physics Letterts, 2009, 95(14): 143117-.   doi: 10.1063/1.3246144
[13] PEI S F, CHENG H M.  The reduction of graphene oxide[J]. Carbon, 2012, 50(9): 3 210-3 228.   doi: 10.1016/j.carbon.2011.11.010
[14] CHEN Y Z, YUE M B, HUANG Z H, et al.  Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization[J]. Chemical Engineering Journal, 2014, 252: 30-37.   doi: 10.1016/j.cej.2014.04.099
[15] VILLAR I, ROLDAN S, RUIZ V, et al.  Capacitive deionization of NaCl solutions with modified activated carbon electrodes[J]. Energy & Fuels, 2010, 24(6): 3 329-3 333.
[16] KAWANO T, KUBOTA M, ONYANGO M S, et al.  Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump[J]. Applied Thermal Engineering, 2008, 28(8-9): 865-871.   doi: 10.1016/j.applthermaleng.2007.07.009
[17] LIU P, WANG H, YAN T, et al.  Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(14): 5 303-5 313.   doi: 10.1039/C5TA10680J

World Health Organization[EB/OL]. 2004. http://www.who.int/tobacco/commol/Lunications/events/wntd/2004/tobaccofacts_nations/en/


MACKAY J, ERIKSEN M, SHAFEY O. The tobacco atlas[R]. 2nd edn, Atlanta: American Cancer Society, 2006.


Cigarette butt waste. American Nonsmokers' Rights Foundation[EB/OL]. 2015. http://www.no-smoke.org/learnmore.php?id=731

[21] NOVOTNY T E, BIALOUS S A, BURT L, et al.  The environmental and health impacts of tobacco agriculture, cigarette manufacture and consumption[J]. Bulletin of the World Health Organization, 2015, 93(12): 877-880.   doi: 10.2471/BLT.15.152744
[22] SLAUGHTER E, GERSBERG R M, WATANABE K, et al.  Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish[J]. Tobacco Control, 2011, 20(6): i25-.
[23] OU J, WAN B, WANG F, et al.  Superhydrophobic fibers from cigarette filters for oil spill cleanup[J]. RSC Advances, 2016, 6(50): 44 469-44 474.   doi: 10.1039/C6RA01303A
[24] SOLTANI S M, YAZDI S K, HOSSEINI S.  Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters[J]. Applied Nanoscience, 2014, 4(5): 551-569.   doi: 10.1007/s13204-013-0230-0
[25] WAND Q, LIAN P, WAND B, et al.  Red Phosphorus Encapsured in porous carbon derived from cigarette filter solid waste as a promising anode material for lithium-ion batteries[J]. Ionics, 2018, 24(11): 3 393-3 403.   doi: 10.1007/s11581-018-2487-5
[26] ZENG C, LI P, ZHANG L.  Preparation of magnetic nickel hollow fibers with a trilobe structure using cellulose acetate fibers as templates[J]. Applied Surface Science, 2013, 266: 214-218.   doi: 10.1016/j.apsusc.2012.11.151
[27] YAND J, KUBOTA F, BABA Y, et al.  Application of cellulose acetate to the selective adsorption and recovery of Au(111)[J]. Carbonhydrate Polymers, 2014, 111: 768-774.   doi: 10.1016/j.carbpol.2014.05.003
[28] BLANKENSHIP T S, MOKAYA R.  Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity[J]. Energy & Environmental Science, 2017, 10(12): 2 552-2 562.
[29] POLARZ S, SMARSLY B, SCHATTKA J H.  Hierachical porous carbon structures from cellulose acetate fibers[J]. Chemical of Materrials, 2002, 14(7): 2 940-2 945.   doi: 10.1021/cm011271r
[30] LEE M, KIM G P, HYEON D S, et al.  Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode[J]. Nanotechnology, 2014, 25(34): 345601-.   doi: 10.1088/0957-4484/25/34/345601
[31] XU X T, WANG M, LIU Y, et al.  Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(15): 5 467-5 473.   doi: 10.1039/C6TA00618C
[32] WAND M, HOU S, LIU Y, et al.  Capacitive neutralization deionization with flow electrodes[J]. Electrochimica Acta, 2016, 216: 211-218.   doi: 10.1016/j.electacta.2016.09.026
[33] 王森, 王永香, 李金霞.  三维石墨烯宏观体的制备及超级电容性能[J]. 华东理工大学学报(自然科学版), 2019, 45(3): 382-387.
[34] WAND J, ZHU M, OUTLAW R A, et al.  Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition[J]. Carbon, 2004, 42(14): 2 867-2 872.   doi: 10.1016/j.carbon.2004.06.035
[35] LIU Y, XU X T, WAND M, et al.  Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization[J]. Chemical Commol/Lunications, 2015, 51(60): 12 020-12 023.
[36] VOLKOV A G, PAULA S, DEAMER D W.  Two mechanisms of permeation of small neutral molecules and hydrates ions across phospholipid bilayers[J]. Bioelectrochemistry and Bioenergetics, 1997, 42: 153-160.   doi: 10.1016/S0302-4598(96)05097-0
[37] STULL D R.  Vapor pressure of pure substances. Organic and inorganic compounds[J]. Industrial and Engineering Chemistry, 1947, 39(4): 517-540.   doi: 10.1021/ie50448a022