[1]

SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks[C]// International Joint Conference on Neural Networks. USA: IEEE, 2011: 2809-2813.

[2]

CHEN X, KUNDU K, ZHANG Z, et al. Monocular 3D object detection for autonomous driving[C]// IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2016: 2147-2156.

[3]

UÇAR A, DEMIR Y, GÜZELIŞ C. Moving towards in object recognition with deep learning for autonomous driving applications[C]// International Symposium on Innovations in Intelligent Systems and Applications. USA: IEEE, 2016: 1-5.

[4] CHEN Y, ZHAO D, LE L, et al.  Multi-task learning for dangerous object detection in autonomous driving[J]. Information Sciences, 2018, 432: 559-571.   doi: 10.1016/j.ins.2017.08.035
[5]

许明文. 基于无人驾驶平台的交通灯及数字检测与识别系统[D].南京: 南京理工大学, 2017.

[6]

TIAN Y L, LUO P, WANG X G, et al. Pedestrian detection aided by deep learning semantic tasks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 5079-5087.

[7] 葛园园, 许有疆, 赵帅, 等.  自动驾驶场景下小且密集的交通标志检测[J]. 智能系统学报, 2018, 13(3): 366-372.
[8]

LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multiBox detector[C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37.

[9]

REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// International Conference on Neural Information Processing Systems. USA: MIT Press, 2015: 91-99.

[10]

GIRSHICK R. Fast R-CNN[C]// IEEE International Conference on Computer Vision. USA: IEEE, 2015: 1440-1448.

[11]

GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2014: 580-587.

[12]

SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations (ICLR). Hilton San Diego: Computer Science, 2015: 1150-1210.

[13]

BOUREAU Y L, PONCE J, LECUN Y. A theoretical analysis of feature pooling in visual recognition[C]// International Conference on Machine Learning. Israel: DBLP, 2010: 111-118.

[14]

NEUBECK A, Gool L V. Efficient non-maximum suppression[C]// International Conference on Pattern Recognition. USA: IEEE, 2006: 850-855.

[15]

BOTTOU L. Large-scale machine learning with stochastic gradient descent[C]// Proceedings of COMPSTAT’2010. Hamburg: Springer, 2010: 177-186.

[16]

LI M, ZHANG T, CHEN Y, et al. Efficient mini-batch training for stochastic optimization[C]// ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. USA: ACM, 2014: 661-670.