[1] XIA J, WANG G, LIN J, et al.  Advances and practices of bioprocess scale-up[J]. Advances in Biochemical Engineering-Biotechnology, 2016, 152: 137-151.
[2]

何伟. 克拉维酸发酵过程工艺优化[D]. 华东理工大学, 2013.

[3] 丁健, 槐强强.  基于自动化和计算流体力学技术的发酵工厂设计课程教学探索[J]. 教育教学论坛, 2016, 0(17): 136-137.   doi: 10.3969/j.issn.1674-9324.2016.17.066
[4] 董淑浩, 朱萍, 徐晓滢, 等.  高粘发酵体系不同搅拌桨的CFD模拟及发酵验证[J]. 生物工程学报, 2015, 31(7): 1099-1107.
[5] MAYER A F, DECKWER W D.  Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations.[J]. Applied Microbiology and Biotechnology, 1996, 45(1/2): 41-46.
[6] 何伟, 冯涛, 王永红, 等.  有机氮源氨基酸组成对克拉维酸发酵的影响[J]. 华东理工大学(自然科学版), 2013, 6(39): 669-674.
[7] KHALEELI N L R.  The origin of the carbons of clavulanic acid[J]. Journal of the Chemical Society, Chemical Communications, 1999, : 1025-1026.
[8] THIRKETTLE JE B J E J.  The origin of the β-lactam carbons of clavulanic acid[J]. Journal of the Chemical Society, Chemical Communications, 1997, : 1025-1026.
[9] TOWNSEND C A.  The role of molecular oxygen in clavulanic acid biosynthesis: evidence for bacterial oxidative deamination[J]. Journal of the Chemical Society, Chemical Communications, 1988, : 1234-1236.
[10] 朱校适, 冯涛, 王永红, 等.  克拉维酸发酵过程变温控制的研究[J]. 中国抗生素杂志, 2008, 33(8): 467-470.
[11] 蒋顺进, 杨亚勇, 王惠青.  克拉维酸发酵工艺的优化研究[J]. 中国抗生素杂志, 2004, (6): 335-337.   doi: 10.3969/j.issn.1001-8689.2004.06.005
[12] SCHMIDT F R.  Optimization and scale up of industrial fermentation processes[J]. Applied Microbiology and Biotechnology., 2005, 68(4): 425-435.   doi: 10.1007/s00253-005-0003-0
[13] 王艳萍, 郭金体, 张阳, 等.  无机盐MgCl2和微量金属离子Zn2+对克拉维酸产量的影响[J]. 天津科技大学学报, 2008, (1): 13-16.   doi: 10.3969/j.issn.1672-6510.2008.01.004
[14] 朱薇玲.  克拉维酸产生菌的优化培养[J]. 生物技术, 2003, (1): 27-28.   doi: 10.3969/j.issn.1004-311X.2003.01.019
[15] 李丹丹, 黄喜桂, 林文良, 等.  棒状链霉菌甘油耐受量与克拉维酸合成的关系[J]. 中国抗生素杂志., 1999, (1): 14-15.
[16] HIGBIE R L.  The Rate of Absorption of a Pure Gas into a Still Liquid during Short Periods of Exposure[J]. American Institute of Chemical Engineers, 1935, (35): 365-389.
[17] DANCKWERTS P V.  Significance of liquid-film coefficients in gas absorption[J]. Industrial & Engineering Chemistry, 1951, (43): 1460-1467.
[18] AZIZAN A, BÜCHS J.  Three-dimensional (3D) evaluation of liquid distribution in shake flask using an optical fluorescence technique[J]. Journal of Biological Engineering, 2017, 11(1): 28-.   doi: 10.1186/s13036-017-0070-7
[19] ZHANG H, WILLIAMS-DALSON W, KESHAVARZ-MOORE E, et al.  Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks[J]. Biotechnology and Applied Biochemistry, 2005, 41(Part 1): 1-8.
[20] LI C, XIA J, CHU J, et al.  CFD analysis of the turbulent flow in baffled shake flasks[J]. Biochemical Engineering Journal, 2013, 70: 140-150.   doi: 10.1016/j.bej.2012.10.012
[21] HORVATH I R, CHATTERJEE S G.  A surface renewal model for unsteady-state mass transfer using the generalized Danckwerts age distribution function[J]. Royal Society Open Science, 2018, 5(5): 172423-.   doi: 10.1098/rsos.172423