[1] WU J, LIU W, GE J, et al.  New sensing mechanisms for design of fluorescent chemosensors emerging in recent years[J]. Chemical Society Reviews, 2011, 40(7): 3483-3495.   doi: 10.1039/c0cs00224k
[2] HU R, LEUNG N L C, TANG B Z.  AIE macromolecules: Syntheses, structures and functionalities[J]. Chemical Society Reviews, 2014, 43(13): 4494-4562.   doi: 10.1039/C4CS00044G
[3] HONG Y, LAM J W Y, TANG B Z.  Aggregation-induced emission[J]. Chemical Society Reviews, 2011, 40(11): 5361-5388.   doi: 10.1039/c1cs15113d
[4] ZHANG Z, WU Y S, TANG K C, et al.  Excited-state conformational/electronic responses of saddle-shaped N, N′-disubstituted-dihydrodibenzo [a, c] phenazines: Wide-tuning emission from red to deep blue and white light combination[J]. Journal of the American Chemical Society, 2015, 137(26): 8509-8520.   doi: 10.1021/jacs.5b03491
[5] 陈薇, 苏建华, 田禾.  振动诱导发光(VIE): 二氢吩嗪类衍生物的双荧光发射机理[J]. 中国科学: 化学, 2016, 46(4): 325-332.
[6] HUANG W, SUN L, ZHENG Z, et al.  Colour-tunable fluorescence of single molecules based on the vibration induced emission of phenazine[J]. Chemical Communications, 2015, 51(21): 4462-4464.   doi: 10.1039/C4CC09613D
[7] WANG N, XIN C, LI Z, et al.  A reversible fluorescent probe for directly monitoring protein-small molecules interaction utilizing vibration-induced emission[J]. Dyes and Pigments, 2019, 163: 425-432.   doi: 10.1016/j.dyepig.2018.12.027
[8] CHEN W, CHEN C L, ZHANG Z, et al.  Snapshotting the excited-state planarization of chemically locked N, N′-disubstituted dihydrodibenzo [a, c] phenazines[J]. Journal of the American Chemical Society, 2017, 139(4): 1636-1644.   doi: 10.1021/jacs.6b11789
[9] ZHANG Z, CHEN C L, CHEN Y A, et al.  Tuning the conformation and color of conjugated polyheterocyclic skeletons by installing ortho-methyl groups[J]. Angewandte Chemie International Edition, 2018, 57(31): 9880-9884.   doi: 10.1002/anie.v57.31
[10] WANG H, ZHANG Z, ZHOU H, et al.  Cu-catalyzed C−H amination/Ullmann N-arylation domino reaction: A straightforward synthesis of 9, 14-diaryl-9, 14-dihydrodibenzo [a, c] phenazine[J]. Chemical Communications, 2016, 52(31): 5459-5462.   doi: 10.1039/C6CC01569G
[11] KUBO Y, NISHIYABU R.  White-light emissive materials based on dynamic polymerization in supramolecular chemistry[J]. Polymer, 2017, 128: 257-275.   doi: 10.1016/j.polymer.2016.12.082
[12] WONG M Y, ZYSMAN-COLMAN E.  Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes[J]. Advanced Materials, 2017, 29(22): 1605444-.   doi: 10.1002/adma.v29.22
[13] WU Y T, ZHAO J L, MU L, et al.  A 2-styryl-1, 8-naphthyridine derivative as a versatile fluorescent probe for the selective recognition of Hg2+, Ag+ and F ions by tuning the solvent[J]. Sensors and Actuators B: Chemical, 2017, 252: 1089-1097.   doi: 10.1016/j.snb.2017.06.057
[14] YAN D, LIN Y, MENG Q, et al.  Layered dinitrostilbene-based molecular solids with tunable micro/nanostructures and the reversible fluorescent response to explosives[J]. Crystal Growth & Design, 2013, 13(10): 4495-4503.
[15] ZHOU D, LIU D, XU W, et al.  Observation of considerable upconversion enhancement induced by Cu2−xS plasmon nanoparticles[J]. ACS Nano, 2016, 10(5): 5169-5179.   doi: 10.1021/acsnano.6b00649
[16] MA J, WANG T, LIU C, et al.  Tunable white-light emission of lanthanide (III) hybrid material based on hectorite[J]. Chinese Chemical Letters, 2018, 29(2): 321-324.   doi: 10.1016/j.cclet.2017.08.010
[17] WU K, LIANG G, SHANG Q, et al.  Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots[J]. Journal of the American Chemical Society, 2015, 137(40): 12792-12795.   doi: 10.1021/jacs.5b08520
[18] AJAYAGHOSH A, VIJAYAKUMAR C, PRAVEEN V K, et al.  Self-location of acceptors as " isolated” or " stacked” energy traps in a supramolecular donor self-assembly: A strategy to wavelength tunable FRET emission[J]. Journal of the American Chemical Society, 2006, 128(22): 7174-7175.   doi: 10.1021/ja0621905
[19] ZHANG H Y, ZHANG Z L, YE K Q, et al.  Organic crystals with tunable emission colors based on a single organic molecule and different molecular packing structures[J]. Advanced Materials, 2006, 18(18): 2369-2372.   doi: 10.1002/(ISSN)1521-4095
[20] PRAVEEN V K, RANJITH C, ARMAROLI N.  White-light-emitting supramolecular gels[J]. Angewandte Chemie International Edition, 2014, 53(2): 365-368.   doi: 10.1002/anie.v53.2
[21] WANG J, YAO X, LIU Y, et al.  Tunable photoluminescence including white-light emission based on noncovalent interaction-locked N, N′-disubstituted dihydrodibenzo [a, c] phenazines[J]. Advanced Optical Materials, 2018, 6(12): 1800074-.   doi: 10.1002/adom.v6.12
[22] ZHOU Z, CHEN D G, SAHA M L, et al.  Designed conformation and photoluminescence properties of self-assembled phenazine-cored platinum (II) metallacycles[J]. Journal of the American Chemical Society, 2019, 141(13): 5535-5543.   doi: 10.1021/jacs.9b01368
[23] BACHMANN M, SUTER D, BLACQUE O, et al.  Tunable and efficient white light phosphorescent emission based on single component N-heterocyclic carbene platinum (II) complexes[J]. Inorganic Chemistry, 2016, 55(10): 4733-4745.   doi: 10.1021/acs.inorgchem.5b02962
[24] KRISHNA A, DARSHAN V, SURESH C H, et al.  Solution processable carbazole derivatives for dopant free single molecule white electroluminescence by room temperature phosphorescence[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360: 249-254.   doi: 10.1016/j.jphotochem.2018.04.038

HE Z, ZHAO W, LAM J W Y, et al. White light emission from a single organic molecule with dual phosphorescence at room temperature[J]. Nature Communications, 2017, 8: 416. DOI: 10.1038/s41467-017-00362-5.

[26] WANG H, LI Y, ZHANG Y, et al.  A new strategy for achieving single-molecular white-light emission: Using vibration-induced emission (VIE) plus aggregation-induced emission (AIE) mechanisms as a two-pronged approach[J]. Chemical Communications, 2019, 55(13): 1879-1882.   doi: 10.1039/C8CC08513G
[27] MECKLENBURG M, HUBBARD W A, WHITE E R, et al.  Nanoscale temperature mapping in operating microelectronic devices[J]. Science, 2015, 347(6222): 629-632.   doi: 10.1126/science.aaa2433
[28] KUCSKO G, MAURER P C, YAO N Y, et al.  Nanometre-scale thermometry in a living cell[J]. Nature, 2013, 500(7460): 54-58.   doi: 10.1038/nature12373
[29] BRITES C D S, LIMA P P, SILVA N J O, et al.  Thermometry at the nanoscale[J]. Nanoscale, 2012, 4(16): 4799-4829.   doi: 10.1039/c2nr30663h
[30] WANG X, WOLFBEIS O S, MEIER R J.  Luminescent probes and sensors for temperature[J]. Chemical Society Reviews, 2013, 42(19): 7834-7869.   doi: 10.1039/c3cs60102a
[31] MCLAURIN E J, BRADSHAW L R, GAMELIN D R.  Dual-emitting nanoscale temperature sensors[J]. Chemistry of Materials, 2013, 25(8): 1283-1292.   doi: 10.1021/cm304034s
[32] CHEN J, WU Y, WANG X, et al.  A soluble cryogenic thermometer with high sensitivity based on excited-state configuration transformations[J]. Physical Chemistry Chemical Physics, 2015, 17(41): 27658-27664.   doi: 10.1039/C5CP04400F
[33] SHI L, SONG W, LIAN C, et al.  Dual-emitting dihydrophenazines for highly sensitive and ratiometric thermometry over a wide temperature range[J]. Advanced Optical Materials, 2018, 6(15): 1800190-.   doi: 10.1002/adom.v6.15
[34] JÄRUP L.  Hazards of heavy metal contamination[J]. British Medical Bulletin, 2003, 68(1): 167-182.   doi: 10.1093/bmb/ldg032

IKEHATA K, JIN Y, MALEKY N, et al. Heavy Metal Pollution in Water Resources in China-Occurrences and Public Health Implications[M]// Heavy Metals in Water: Presence, Removal and Safety. Cambridge: Royal Society of Chemistry, 2014: 141-167.

[36] BAIRI P, CHAKRABORTY P, ROY B, et al.  Sensing of Hg2+ and Ag+ through a pH dependent FRET system: Fabrication of molecular logic gates[J]. Sensors and Actuators B: Chemical, 2014, 193: 349-355.   doi: 10.1016/j.snb.2013.11.119
[37] GUPTA V K, ALI I, SALEH T A, et al.  Chemical treatment technologies for waste-water recycling-an overview[J]. RSC Advances, 2012, 2(16): 6380-6388.   doi: 10.1039/c2ra20340e
[38] BOLGER P M, SCHWETZ B A.  Mercury and health[J]. New England Journal of Medicine, 2002, 347(22): 1735-1736.   doi: 10.1056/NEJMp020139
[39] ZHOU H, MEI J, CHEN Y A, et al.  Phenazine-basedratiometric Hg2+ probes with well-resolved dual emissions: A new sensing mechanism by vibration-induced emission (VIE)[J]. Small, 2016, 12(47): 6542-6546.   doi: 10.1002/smll.v12.47
[40] LI Y, LIU Y, ZHOU H, et al.  Ratiometric Hg2+/Ag+ probes with orange red-white-blue fluorescence response constructed by integrating vibration-induced emission with anaggregation-induced emission motif[J]. Chemistry: A European Journal, 2017, 23(39): 9280-9287.   doi: 10.1002/chem.v23.39

BURNS A, ILIFFE S. Alzheimer’s disease[EB/OL]. BMJ, 2009-04-01 [2019-06-20]. https://www.bmj.com/content/338/bmj.101349.

[42] CITRON M.  Strategies for disease modification in Alzheimer's disease[J]. Nature Reviews Neuroscience, 2004, 5(9): 677-685.   doi: 10.1038/nrn1495
[43] DE STROOPER B, VASSAR R, GOLDE T.  The secretases: Enzymes with therapeutic potential in Alzheimer disease[J]. Nature Reviews Neurology, 2010, 6(2): 99-107.   doi: 10.1038/nrneurol.2009.218
[44] HE G, LUO W, LI P, et al.  Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease[J]. Nature, 2010, 467(7311): 95-98.   doi: 10.1038/nature09325
[45] KATZMAN R.  The prevalence and malignancy of Alzheimer disease: A major killer[J]. Archives of Neurology, 1976, 33(4): 217-218.   doi: 10.1001/archneur.1976.00500040001001
[46] DOU W T, CHEN W, HE X P, et al.  Vibration-induced-emission (VIE) for imaging amyloid β fibrils[J]. Faraday Discussions, 2017, 196: 395-402.   doi: 10.1039/C6FD00156D
[47] WU Y, HIRAI Y, TSUNOBUCHI Y, et al.  Supramolecular approach to the formation of magneto-active physical gels[J]. Chemical Science, 2012, 3(10): 3007-3010.   doi: 10.1039/c2sc00714b
[48] LIU C, YANG D, JIN Q, et al.  A chiroptical logic circuit based on self‐assembled soft materials containing amphiphilic spiropyran[J]. Advanced Materials, 2016, 28(8): 1644-1649.   doi: 10.1002/adma.201504883
[49] GONZÁLEZ-RODRIÍGUEZ D, SCHENNING A P H J.  Hydrogen-bonded supramolecular π-functional materials[J]. Chemistry of Materials, 2010, 23(3): 310-325.
[50] BASABE-DESMONTS L, REINHOUDT D N, CREGO-CALAMA M.  Design of fluorescent materials for chemical sensing[J]. Chemical Society Reviews, 2007, 36(6): 993-1017.   doi: 10.1039/b609548h
[51] MOON H J, PARK M H, JOO M K, et al.  Temperature-responsive compounds as in situ gelling biomedical materials[J]. Chemical Society Reviews, 2012, 41(14): 4860-4883.   doi: 10.1039/c2cs35078e
[52] AJAYAGHOSH A, PRAVEEN V K, VIJAYAKUMAR C.  Organogels as scaffolds for excitation energy transfer and light harvesting[J]. Chemical Society Reviews, 2008, 37(1): 109-122.   doi: 10.1039/B704456A
[53] LAN Y, CORRADINI M G, WEISS R G, et al.  To gel or not to gel: Correlating molecular gelation with solvent parameters[J]. Chemical Society Reviews, 2015, 44(17): 6035-6058.   doi: 10.1039/C5CS00136F
[54] JONES C D, STEED J W.  Gels with sense: Supramolecular materials that respond to heat, light and sound[J]. Chemical Society Reviews, 2016, 45(23): 6546-6596.   doi: 10.1039/C6CS00435K
[55] SUN G, ZHOU H, LIU Y, et al.  Ratiometric indicator based on vibration-induced emission for in situ and real-time monitoring of gelation processes[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 20205-20212.
[56] RAPOSO G, STOORVOGEL W.  Extracellular vesicles: Exosomes, microvesicles, and friends[J]. Journal of Cell Biology, 2013, 200(4): 373-383.   doi: 10.1083/jcb.201211138
[57] SIMONS K, TOOMRE D.  Lipid rafts and signal transduction[J]. Nature Reviews Molecular Cell Biology, 2000, 1(1): 31-39.   doi: 10.1038/35036052
[58] GLANCY B, BALABAN R S.  Role of mitochondrial Ca2+ in the regulation of cellular energetics[J]. Biochemistry, 2012, 51(14): 2959-2973.   doi: 10.1021/bi2018909
[59] VANDENABEELE P, GALLUZZI L, BERGHE T V, et al.  Molecular mechanisms of necroptosis: An ordered cellular explosion[J]. Nature Reviews Molecular Cell Biology, 2010, 11(10): 700-714.   doi: 10.1038/nrm2970
[60] HUMENIUK H V, ROSSPEINTNER A, Licari G, et al.  White-fluorescent dual-emission mechanosensitive membrane probes that function by bending rather than twisting[J]. Angewandte Chemie International Edition, 2018, 130(33): 10719-10723.