[1] DONG X Q, LEI J W, CHEN Y F, et al.  Selective hydrogenation of acetic acid to ethanol on Cu: In catalyst supported by SBA-15[J]. Applied Catalysis B: Environmental, 2018, 244: 448-458.
[2] LIU J T, LYU H S, CHEN Y F, et al.  Insights into the mechanism of ethanol synthesis and ethyl acetate inhibition from acetic acid hydrogenation over Cu2In(100): A DFT study[J]. Physical Chemistry Chemical Physics, 2017, 19(41): 28083-28097.   doi: 10.1039/C7CP04364C
[3] ZHOU M C, ZHANG H T, MA H F, et al.  Insight on mechanism of Sn modification in alumina supported RhSn catalysts for acetic acid hydrogenation to fuel-grade ethanol[J]. Fuel, 2017, 203: 774-780.   doi: 10.1016/j.fuel.2017.03.063
[4] PRANAB K R, RAVI K V, SREEDEVI U.  Acetic acid hydrogenation to ethanol over supported Pt-Sn catalyst: Effect of bronsted acidity on product selectivity[J]. Mole cular Catalysis, 2018, 448: 78-90.   doi: 10.1016/j.mcat.2018.01.030
[5] 潘文龙, 岳志, 程振民.  醋酸乙酯加氢制乙醇气液固三相反应过程[J]. 华东理工大学学报(自然科学版), 2016, 42(6): 752-757.
[6] XU P.  Intense competition expected in China's ethyl acetate market[J]. China Chemical Reporter, 2013, 24(1): 22-26.
[7] TIAN J X, HU J, SHAN W J, et al.  Cu9-Alx-Mgy catalysts for hydrogenation of ethyl acetate to ethanol[J]. Applied Catalysis A: General, 2017, 544: 108-115.   doi: 10.1016/j.apcata.2017.07.014
[8] LU Z, YIN H, WANG A, et al.  Hydrogenation of ethyl acetate to ethanol over Cu/ZnO/MOx (MOx = SiO2, Al2O3 and ZrO2) catalysts[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 208-215.   doi: 10.1016/j.jiec.2016.03.028
[9] SCHITTKOWSKI J, TOLLE K, ANKE S, et al.  On the bifunctional nature of Cu/ZrO2 catalysts applied in the hydrogenation of ethyl acetate[J]. Journal of Catalysis, 2017, 352: 120-129.   doi: 10.1016/j.jcat.2017.05.009
[10] ZHU Y M, SHI L.  Zn promoted Cu-Al catalyst for hydrogenation of ethyl acetate to alcohol[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 2341-2347.   doi: 10.1016/j.jiec.2013.10.010
[11] GAO P, LI F, ZHAO N, et al.  Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2013, 468(12): 442-452.
[12] ZHONG K, WANG X.  The influence of different precipitants on the copper-based catalysts for hydrogenation of ethyl acetate to ethanol[J]. International Journal of Hydrogen Energy, 2014, 39(21): 10951-10958.   doi: 10.1016/j.ijhydene.2014.05.045
[13] ZHENG X.  Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol[J]. ACS Catalysis, 2013, 3(3): 2738-2749.
[14] YE C L, GUO C L, ZHANG J L.  Highly active and stable CeO2-SiO2 supported Cu catalysts for the hydrogenation of methyl acetate to ethanol[J]. Fuel Processing Technology, 2016, 143: 219-224.   doi: 10.1016/j.fuproc.2015.12.003
[15] HUANG Z, LIU H, CUI F, et al.  Effects of the precipitation agents and rare earth additives on the structure and catalytic performance in glycerol hydrogenolysis of Cu/SiO2 catalysts prepared by precipitation-gel method[J]. Catalysis Today, 2014, 234(10): 223-232.
[16] HUANG Y, ZHANG W, YUE Z, et al.  Performance of SiO2-TiO2 binary oxides supported Cu-ZnO catalyst in ethyl acetate hydrogenation to ethanol[J]. Catalysis Letters, 2017, 147(11): 2817-2825.   doi: 10.1007/s10562-017-2165-7
[17] GAO P, ZHONG L, ZHANG L, et al.  Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catalysis Science and Technology, 2015, 5(9): 4365-4377.   doi: 10.1039/C5CY00372E
[18] GROEN J C, PEFFER L A A, PÉREZ-RAMÍREZ J.  Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Microporous and Mesoporous Materials, 2003, 60(1): 1-17.
[19] YIN A, GUO X, DAI W L, et al.  The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+[J]. The Journal of Physical Chemistry C, 2009, 113(25): 11003-11013.   doi: 10.1021/jp902688b
[20] WANG M H, WANG F L, LI C, et al.  Cu-Zn-Al-Fe/HZSM-5 catalyst for direct synthesis of dimethyl ether[J]. Journal of Northeastern University, 2012, 33(2): 251-253.
[21] NIE R, LEI H, PAN S, et al.  Core-shell structured CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J]. Fuel, 2011, 90(7): 419-425.
[22] GONG J, YUE H, ZHAO Y, et al.  Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. Journal of the American Chemical Society, 2012, 134(34): 13922-13925.   doi: 10.1021/ja3034153
[23] POELS E K, BRANDS D S.  Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction[J]. Applied Catalysis A: General, 2000, 191(1/2): 83-96.
[24] 张维义, 岳志, 黄岩, 等.  载体对乙酸乙酯加氢制乙醇铜基催化剂性能影响研究[J]. 天然气化工(C1化学与化工), 2017, 42(6): 57-63.   doi: 10.3969/j.issn.1001-9219.2017.06.012
[25] DONG F, ZHU Y, ZHENG H, et al.  Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: The synergistic effect of metal and acid sites[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 140-148.   doi: 10.1016/j.molcata.2014.12.001