[1]

桂进乐. 基于微小通道与冲击射流的电子器件冷却机理研究[D]. 武汉: 华中科技大学, 2015.

[2] 郑海燕.  冷轧连续退火炉冷却技术的发展和应用[J]. 轧钢, 2018, 35(1): 52-56.
[3] 刘志伟, 郭晓宏, 张瑞琦, 等.  超高强度冷轧耐候马氏体钢的组织与性能[J]. 上海金属, 2017, 39(5): 47-50.   doi: 10.3969/j.issn.1001-7208.2017.05.011
[4]

柳焕楠. 涡轮叶片冲击冷却仿真与实验研究[D]. 黑龙江: 哈尔滨工程大学, 2017.

[5] XING YG, ZHANS L, ZHAO Q, et al.  Experimental and numerical investigations of overall cooling effectiveness on a vane end wall with jet impingement and film cooling[J]. Applied Thermal Engineering, 2019, 148(5): 1148-.
[6] 刘亮亮, 竺晓程, 刘昊, 等.  纵向涡发生器对涡轮叶片前缘冲击冷却的影响[J]. 动力工程学报, 2018, 38(9): 719-724.
[7]

顾维藻, 神家锐, 马重芳, 等. 强化传热[M]. 北京: 科学出版社, 1990: 189-216.

[8]

杨世铭, 陶文铨. 传热学[M]. 第4版. 北京: 高等教育出版, 2006: 277-280.

[9]

INCROPERA F P, DEWITT D P, Bergman T L et al. 葛新石, 叶宏译. 传热和传质基本原理[M]. 北京: 化学工业出版社, 2007: 279-283

[10] GARDON R, AKFIRAT J C.  The role of turbulence in determining the heat transfer characteristics of impinging jets[J]. International Journal of Heat and Mass Transfer, 1965, 8(10): 1261-1272.   doi: 10.1016/0017-9310(65)90054-2
[11]

GARDON R, COBONPUE J. Heat transfer between a flat plate and jets of air impinging on it[C]//International Developments in Heat Transfer.[s.l.]: ASME, 1962: 454-460.

[12]

MARTIN H. Heat and mass transfer between impinging gas jet and solid surface[C]//Hartnett J P, Irvine J. T F. Advances in Heat Transfer, New York: Academic Press Inc, 1977:1-60.

[13] KROTZSCH P.  Warme-und sroffubergang bei prallstromung aus dusenund blendenfeldern[J]. Chemie Ingenieur Technik, 1968, 40(7): 339-344.   doi: 10.1002/cite.330400706
[14] KUNTIKANA P, PRABHU S V.  Isothermal air jet and premixed flame jet impingement: Heat transfer characterisation and comparison[J]. International Journal of Thermal Sciences, 2016, 100(2): 401-415.
[15] VISKANTA R.  Heat transfer to impinging isothermal gas and flame jets[J]. Experiment Thermal and Fluid Science, 1993, 6(2): 111-134-.   doi: 10.1016/0894-1777(93)90022-B
[16]

ZUCKERMAN N, LIOR N. Jet impingement heat transfer: Physics, correlations, and numerical modeling[J]. Advances in Heat Transfer, 2006, 39: 565-631.

[17] MEOLA C.  A new correlation of Nusselt number for impinging plate[J]. Heat Transfer Engineering, 2009, 30(3): 221-228.   doi: 10.1080/01457630802304311
[18] ETEMOGLU A B, KEMAL I.  Investigation into the effect of nozzle shape on the nozzle discharge coefficient and heat and mass transfer characteristics of impinging air jets[J]. Heat and Mass Transfer, 2010, 46(11): 1395-1410.
[19] DONG-HO R, PIL-HYUN Y, HYUNG H C.  Local heat/mass transfer and flow characteristics of array impinging jets with effusion holes ejecting spend air[J]. International Journal of Heat and Mass Transfer, 2003, 46(6): 1049-1061.   doi: 10.1016/S0017-9310(02)00363-0
[20] GLASER H.  Untersuchungen an schlitz- und mehrdusenanord-nungen bei der trocknung feuchter oberflachen durch warm-luftstrahlen[J]. Chemie Ingenieur Technik, 1962, 34(7): 200-207.
[21] OTT H.  Warmeubergang an einerdutchLuftstrahlengekuhlten Platte[J]. Schweizer Bauzeitung, 1961, 79(46): 834-840.
[22]

MEOLA C, CARLOMAGNO G M. Intensive cooling of large surfaces with arrays of jets[C]// Quantitative InfraRed Thermography Conference, 2006, Padova, Italy:[s.n.]. http://dx.doi.org/10.21611/qirt.2006.064.

[23] 王磊, 张靖周, 杨卫华.  密集型阵列冲击射流换热特性实验[J]. 航空动力学报, 2009, 24(6): 1264-1269.
[24] KLINE S J, MCCLINTOCK F A.  Describing uncertainties in single sample experiments[J]. Mechanical Engineering., 1953, 75(1): 3-8.