[1] 潘兴鲁, 董丰收, 刘新刚, 等.  中国农药七十年发展与应用回顾[J]. 现代农药, 2020, 19(1): 1-5, 23.
[2] 杨慧, 刘立晶, 刘忠军, 等.  我国农田化肥施用现状分析及建议[J]. 农机化研究, 2014, 36(9): 260-264.   doi: 10.3969/j.issn.1003-188X.2014.09.059
[3] KUSUMASTUTI Y, ISTIANI A, ROCHMADI, et al.  Chitosan-based polyion multilayer coating on NPK fertilizer as controlled released fertilizer[J]. Advances in Materials ence and Engineering, 2019, 2019(11): 1-8.
[4] NURUZZAMAN M, RAHMAN M M, LIU Y, et al.  Nanoencapsulation, nano-guard for pesticides: A new window for safe application[J]. Journal of Agricultural and Food Chemistry, 2016, 64(7): 1447-1483.   doi: 10.1021/acs.jafc.5b05214
[5] 金涌, 程易, 颜彬航.  化学反应工程的前世、今生与未来[J]. 化工学报, 2013, 64(1): 34-43.   doi: 10.3969/j.issn.0438-1157.2013.01.006
[6] 施瑢, 王玉军, 骆广生.  膜分散微反应器制备纳米ZnO颗粒[J]. 过程工程学报, 2010, 10(S1): 1-6.
[7] LIU L, XIANG N, NI Z.  Droplet-based microreactor for the production of micro/nano-materials[J]. Electrophoresis, 2020, 41(10/11): 833-851.
[8] 潘振中, 崔博, 崔海信, 等.  农药纳米混悬剂及其制备方法探析[J]. 农药学学报, 2014, 16(6): 635-643.   doi: 10.3969/j.issn.1008-7303.2014.06.02
[9] KIM S, WANG H, YAN L, et al.  Continuous preparation of itraconazole nanoparticles using droplet-based microreactor[J]. Chemical Engineering Journal, 2020, 393: 124721-.   doi: 10.1016/j.cej.2020.124721
[10] USON L, ARRUEBO M, SEBASTIAN V, et al.  Single phase microreactor for the continuous, high-temperature synthesis of <4 nm superparamagnetic iron oxide nanoparticles[J]. Chemical Engineering Journal, 2018, 340: 66-72.   doi: 10.1016/j.cej.2017.12.024
[11] 骆广生, 王凯, 王佩坚, 等.  微反应器内聚合物合成研究进展[J]. 化工学报, 2014, 65(7): 2563-2573.   doi: 10.3969/j.issn.0438-1157.2014.07.018
[12] LIU Y, YANG G, ZOU D, et al.  Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery[J]. Industrial & Engineering Chemistry Research, 2019, 59(9): 4134-4149.
[13] JOHNSON B K, PRUD'HOMME R K.  Chemical processing and micromixing in confined impinging jets[J]. AIChE Journal, 2003, 49(9): 2264-2282.   doi: 10.1002/aic.690490905
[14] JOHNSON B K, PRUD'HOMME R K.  Flash nanoprecipitation of organic actives and block copolymers using a Confined Impinging Jets Mixer[J]. Australian Journal of Chemistry, 2003, 56(10): 1021-1024.   doi: 10.1071/CH03115
[15] LI M, XU Y, SUN J, et al.  Fabrication of charge-conversion nanoparticles for cancer Imaging by flash nanoprecipitation[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10752-10760.
[16] WANG M, LIN S, WANG J, et al.  Controlling morphology and release behavior of sorafenib-loaded nanocarriers prepared by flash nanoprecipitation[J]. Industrial & Engineering Chemistry Research, 2018, 57(35): 11911-11919.
[17] WANG M, XU Y, WANG J, et al.  Biocompatible nanoparticle based on dextran-b-Poly(L-lactide) block copolymer formed by flash nanoprecipitation[J]. Chemistry Letters, 2015, 44(12): 1688-1690.   doi: 10.1246/cl.150800
[18] WANG M, YANG N, GUO Z, et al.  Facile preparation of AIE-Active fluorescent nanoparticles through flash nanoprecipitation[J]. Industrial & Engineering Chemistry Research, 2015, 54(17): 4683-4688.
[19] WANG M, XU Y, LIU Y, et al.  Morphology tuning of aggregation-induced emission probes by flash nanoprecipitation: Shape and size effects on in vivo imaging[J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25186-25193.
[20] TAN Z, SHI Y, WEI T, et al.  Fast and facile preparation of S nanoparticles by flash nanoprecipitation for lithium–sulfur batteries[J]. New Journal of Chemistry, 2020, 44(2): 466-471.
[21] ZHU Z, XU P, FAN G, et al.  Fast synthesis and separation of nanoparticles via in-situ reactive flash nanoprecipitation and pH tuning[J]. Chemical Engineering Journal, 2019, 356: 877-885.   doi: 10.1016/j.cej.2018.09.103
[22] D'ADDIO S M, PRUD'HOMME R K.  Controlling drug nanoparticle formation by rapid precipitation[J]. Advanced Drug Delivery Reviews, 2011, 63(6): 417-426.   doi: 10.1016/j.addr.2011.04.005
[23] CHEN K, FU Z, WANG M, et al.  Preparation and characterization of size-controlled nanoparticles for high-loading lambda-cyhalothrin delivery through flash nanoprecipitation[J]. Journal of Agricultural and Food Chemistry, 2018, 66(31): 8246-8252.   doi: 10.1021/acs.jafc.8b02851
[24] FU Z, LI L, WANG Y, et al.  Direct preparation of drug-loaded mesoporous silica nanoparticles by sequential flash nanoprecipitation[J]. Chemical Engineering Journal, 2020, 382: 122905-.   doi: 10.1016/j.cej.2019.122905
[25] FU Z, CHEN K, LI L, et al.  Spherical and spindle-like abamectin-loaded nanoparticles by flash nanoprecipitation for southern root-knot nematode control: preparation and characterization[J]. Nanomaterials, 2018, 8(6): 449-.
[26] 马俊, 李莉, 王铭纬, 等.  基于瞬时纳米沉淀法制备尺寸可控载药纳米粒子[J]. 华东理工大学学报(自然科学版), 2017, 43(5): 597-605.
[27] FU Z, LI L, WANG M, et al.  Size control of drug nanoparticles stabilized by mPEG-b-PCL during flash nanoprecipitation[J]. Colloid and Polymer Science, 2018, 296(5): 935-940.   doi: 10.1007/s00396-018-4311-1
[28] ZHU Z.  Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability[J]. Biomaterials, 2013, 34(38): 10238-10248.   doi: 10.1016/j.biomaterials.2013.09.015
[29] 刘靖康, 李猛, 王铭纬, 等.  基于瞬时纳米沉淀法的球形纳米粒子电荷及粒径调控[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 334-340.
[30] CUI B, FENG L, WANG C, et al.  Stability and biological activity evaluation of chlorantraniliprole solid nanodispersions prepared by high pressure homogenization[J]. Plos One, 2016, 11(8): e0160877-.   doi: 10.1371/journal.pone.0160877
[31] WANG Y, MA Y, ZHENG Y, et al.  In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity[J]. International Journal of Pharmaceutics, 2013, 441(1/2): 728-735.
[32] SHELAR D B, PAWAR S K, VAVIA P R.  Fabrication of isradipine nanosuspension by anti-solvent microprecipitation-high-pressure homogenization method for enhancing dissolution rate and oral bioavailability[J]. Drug Delivery Translational Research, 2013, 3(5): 384-391.   doi: 10.1007/s13346-012-0081-3
[33] MARTINEZ-SANCHEZ A, TARAZONA-DIAZ M P, GARCIA-GONZALEZ A, et al.  Effect of high-pressure homogenization on different matrices of food supplements[J]. Food Science and Technology International, 2016, 22(8): 708-719.   doi: 10.1177/1082013216642887
[34] WANG A, CUI J, WANG Y, et al.  Preparation and characterization of a novel controlled-release nano-delivery system loaded with pyraclostrobin via high-pressure homogenization[J]. Pest Management Science, 2020, 76(8): 2829-2837.   doi: 10.1002/ps.5833
[35] PAN Z, CUI B, ZENG Z, et al.  Lambda-cyhalothrin nanosuspension prepared by the melt emulsification-high pressure homogenization method[J]. Journal of Nanomaterials, 2015, 16: 123496-.
[36] LIANG Y, GUO M, FAN C, et al.  Development of novel urease-responsive pendimethalin microcapsules using silica-IPTS-PEI as controlled release carrier materials[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4802-4810.
[37] ATTA S, PAUL A, BANERJEE R, et al.  Photoresponsive polymers based on a coumarin moiety for the controlled release of pesticide 2, 4-D[J]. RSC Advances, 2015, 5(121): 99968-99975.   doi: 10.1039/C5RA18944F
[38] GAO Z, YUAN P, WANG D, et al.  Photo-controlled release of fipronil from a coumarin triggered precursor[J]. Bioorganic & Medicinal Chemistry Letters, 2017, 27(11): 2528-2535.
[39] XU Z, GAO Z, SHAO X.  Light-triggered release of insecticidally active spirotetramat-enol[J]. Chinese Chemical Letters, 2018, 29(11): 1648-1650.   doi: 10.1016/j.cclet.2018.01.025
[40] CHEN C, ZHANG G, DAI Z, et al.  Fabrication of light-responsively controlled-release herbicide using a nanocomposite[J]. Chemical Engineering Journal, 2018, 349: 101-110.   doi: 10.1016/j.cej.2018.05.079
[41] DING K, SHI L, ZHANG L, et al.  Synthesis of photoresponsive polymeric propesticide micelles based on PEG for the controlled release of a herbicide[J]. Polymer Chemistry, 2016, 7(4): 899-904.   doi: 10.1039/C5PY01690H
[42] CAMARA M C, CAMPOS E V R, MONTEIRO R A, et al.  Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture[J]. Journal of Nanobiotechnology, 2019, 17: 100-.   doi: 10.1186/s12951-019-0533-8
[43] HUANG B, CHEN F, SHEN Y, et al.  Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology[J]. Nanomaterials, 2018, 8(2): 102-.   doi: 10.3390/nano8020102
[44] XU X, BAI B, WANG H, et al.  A near-infrared and temperature-responsive pesticide release platform through core-shell polydopamine@PNIPAm nanocomposites[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6424-6432.
[45] GAO Y, XIAO Y, MAO K, et al.  Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery[J]. Chemical Engineering Journal, 2020, 383: 123169-.   doi: 10.1016/j.cej.2019.123169
[46] SHEN Y, WANG Y, ZHAO X, et al.  Preparation and physicochemical characteristics of thermo-responsive emamectin benzoate microcapsules[J]. Polymers (Basel), 2017, 9(9): 418-.
[47] ZHANG Y, CHEN W, JING M, et al.  Self-assembled mixed micelle loaded with natural pyrethrins as an intelligent nano-insecticide with a novel temperature-responsive release mode[J]. Chemical Engineering Journal, 2019, 361: 1381-1391.   doi: 10.1016/j.cej.2018.10.132
[48] 王宁, 齐麟, 王娅, 等.  温度响应型吡唑醚菌酯微囊的制备与性能表征[J]. 农药学学报, 2017, 19(3): 381-387.
[49] KOCAK G, TUNCER C, BüTüN V.  pH-responsive polymers[J]. Polymer Chemistry, 2017, 8(1): 144-176.   doi: 10.1039/C6PY01872F
[50] ZHAO M, ZHOU H, CHEN L, et al.  Carboxymethyl chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide[J]. Carbohydrate Polymers, 2020, 243: 116433-.   doi: 10.1016/j.carbpol.2020.116433
[51] LIU G, LIN G, TAN M, et al.  Hydrazone-linked soybean protein isolate-carboxymethyl cellulose conjugates for pH-responsive controlled release of pesticides[J]. Polymer Journal, 2019, 51(11): 1211-1222.   doi: 10.1038/s41428-019-0235-y
[52] XIANG Y, LU X, YUE J, et al.  Stimuli-responsive hydrogel as carrier for controlling the release and leaching behavior of hydrophilic pesticide[J]. Science of the Total Environment, 2020, 722: 137811-.   doi: 10.1016/j.scitotenv.2020.137811
[53] XIANG Y, ZHANG G, CHEN C, et al.  Fabrication of a pH-responsively controlled-release pesticide using an attapulgite-based Hydrogel[J]. ACS Sustainable Chemistry & Engineering, 2017, 6(1): 1192-1201.
[54] TONG M M, GAO W J, JIAO W T, et al.  Uptake, translocation, metabolism, and distribution of glyphosate in nontarget tea plant (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry, 2017, 65(35): 7638-7646.   doi: 10.1021/acs.jafc.7b02474
[55] CHEN K, WANG Y, CUI H, et al.  Difunctional fluorescence nanoparticles for accurate tracing of nanopesticide fate and crop protection prepared by flash nanoprecipitation[J]. Journal of Agricultural and Food Chemistry, 2020, 68(3): 735-741.   doi: 10.1021/acs.jafc.9b06744
[56] CAO L, ZHANG H, ZHOU Z, et al.  Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles[J]. Nanoscale, 2018, 10(43): 20354-20365.   doi: 10.1039/C8NR04626C
[57] ZHAO X, CUI H, WANG Y, et al.  Development strategies and prospects of nano-based smart pesticide formulation[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6504-6512.   doi: 10.1021/acs.jafc.7b02004
[58] ZHI H, YU M, YAO J, et al.  A facile approach to increasing the foliage retention of pesticides based on coating with a tannic acid/Fe3+ complex[J]. Coatings, 2020, 10(4): 359-.   doi: 10.3390/coatings10040359
[59] HAO L, LIN G, LIAN J, et al.  Carboxymethyl cellulose capsulated zein as pesticide nano-delivery system for improving adhesion and anti-UV properties[J]. Carbohydrate Polymers, 2020, 231: 115725-.   doi: 10.1016/j.carbpol.2019.115725
[60] YU M, SUN C, XUE Y, et al.  Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention[J]. RSC Advances, 2019, 9(46): 27096-27104.   doi: 10.1039/C9RA05843E
[61] JIA X, MA Z Y, ZHANG G X, et al.  Polydopamine film coated controlled-release multielement compound fertilizer based on mussel-inspired chemistry[J]. Journal of Agricultural and Food Chemistry, 2013, 61(12): 2919-2924.   doi: 10.1021/jf3053059
[62] MA Z, JIA X, HU J, et al.  Mussel-inspired thermosensitive polydopamine-graft-poly(N-isopropylacrylamide) coating for controlled-release fertilizer[J]. Journal of Agricultural and Food Chemistry, 2013, 61(50): 12232-12237.   doi: 10.1021/jf4038826
[63] MA Z Y, JIA X, ZHANG G X, et al.  pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator[J]. Journal of Agricultural and Food Chemistry, 2013, 61(23): 5474-5482.   doi: 10.1021/jf401102a
[64] KANG J, BAI G, MA S, et al.  On-site surface coordination complexation via mechanochemistry for versatile metal-phenolic networks films[J]. Advanced Materials Interfaces, 2019, 6(5): 1801789-.   doi: 10.1002/admi.201801789
[65] 王云爱, 于海欧, 徐菊敏.  现代农业“水肥药一体化”技术[J]. 中国农业信息, 2013, (1): 89-.