[1] |
潘兴鲁, 董丰收, 刘新刚, 等.
中国农药七十年发展与应用回顾[J]. 现代农药现代农药, 2020, 19(1): 1-5, 23.
|
[2] |
杨慧, 刘立晶, 刘忠军, 等.
我国农田化肥施用现状分析及建议[J]. 农机化研究农机化研究, 2014, 36(9): 260-264.
doi: 10.3969/j.issn.1003-188X.2014.09.059
|
[3] |
KUSUMASTUTI Y, ISTIANI A, ROCHMADI, et al.
Chitosan-based polyion multilayer coating on NPK fertilizer as controlled released fertilizer[J]. Advances in Materials ence and EngineeringAdvances in Materials ence and Engineering, 2019, 2019(11): 1-8.
|
[4] |
NURUZZAMAN M, RAHMAN M M, LIU Y, et al.
Nanoencapsulation, nano-guard for pesticides: A new window for safe application[J]. Journal of Agricultural and Food ChemistryJournal of Agricultural and Food Chemistry, 2016, 64(7): 1447-1483.
doi: 10.1021/acs.jafc.5b05214
|
[5] |
金涌, 程易, 颜彬航.
化学反应工程的前世、今生与未来[J]. 化工学报化工学报, 2013, 64(1): 34-43.
doi: 10.3969/j.issn.0438-1157.2013.01.006
|
[6] |
施瑢, 王玉军, 骆广生.
膜分散微反应器制备纳米ZnO颗粒[J]. 过程工程学报过程工程学报, 2010, 10(S1): 1-6.
|
[7] |
LIU L, XIANG N, NI Z.
Droplet-based microreactor for the production of micro/nano-materials[J]. ElectrophoresisElectrophoresis, 2020, 41(10/11): 833-851.
|
[8] |
潘振中, 崔博, 崔海信, 等.
农药纳米混悬剂及其制备方法探析[J]. 农药学学报农药学学报, 2014, 16(6): 635-643.
doi: 10.3969/j.issn.1008-7303.2014.06.02
|
[9] |
KIM S, WANG H, YAN L, et al.
Continuous preparation of itraconazole nanoparticles using droplet-based microreactor[J]. Chemical Engineering JournalChemical Engineering Journal, 2020, 393: 124721-.
doi: 10.1016/j.cej.2020.124721
|
[10] |
USON L, ARRUEBO M, SEBASTIAN V, et al.
Single phase microreactor for the continuous, high-temperature synthesis of <4 nm superparamagnetic iron oxide nanoparticles[J]. Chemical Engineering JournalChemical Engineering Journal, 2018, 340: 66-72.
doi: 10.1016/j.cej.2017.12.024
|
[11] |
骆广生, 王凯, 王佩坚, 等.
微反应器内聚合物合成研究进展[J]. 化工学报化工学报, 2014, 65(7): 2563-2573.
doi: 10.3969/j.issn.0438-1157.2014.07.018
|
[12] |
LIU Y, YANG G, ZOU D, et al.
Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery[J]. Industrial & Engineering Chemistry ResearchIndustrial & Engineering Chemistry Research, 2019, 59(9): 4134-4149.
|
[13] |
JOHNSON B K, PRUD'HOMME R K.
Chemical processing and micromixing in confined impinging jets[J]. AIChE JournalAIChE Journal, 2003, 49(9): 2264-2282.
doi: 10.1002/aic.690490905
|
[14] |
JOHNSON B K, PRUD'HOMME R K.
Flash nanoprecipitation of organic actives and block copolymers using a Confined Impinging Jets Mixer[J]. Australian Journal of ChemistryAustralian Journal of Chemistry, 2003, 56(10): 1021-1024.
doi: 10.1071/CH03115
|
[15] |
LI M, XU Y, SUN J, et al.
Fabrication of charge-conversion nanoparticles for cancer Imaging by flash nanoprecipitation[J]. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces, 2018, 10(13): 10752-10760.
|
[16] |
WANG M, LIN S, WANG J, et al.
Controlling morphology and release behavior of sorafenib-loaded nanocarriers prepared by flash nanoprecipitation[J]. Industrial & Engineering Chemistry ResearchIndustrial & Engineering Chemistry Research, 2018, 57(35): 11911-11919.
|
[17] |
WANG M, XU Y, WANG J, et al.
Biocompatible nanoparticle based on dextran-b-Poly(L-lactide) block copolymer formed by flash nanoprecipitation[J]. Chemistry LettersChemistry Letters, 2015, 44(12): 1688-1690.
doi: 10.1246/cl.150800
|
[18] |
WANG M, YANG N, GUO Z, et al.
Facile preparation of AIE-Active fluorescent nanoparticles through flash nanoprecipitation[J]. Industrial & Engineering Chemistry ResearchIndustrial & Engineering Chemistry Research, 2015, 54(17): 4683-4688.
|
[19] |
WANG M, XU Y, LIU Y, et al.
Morphology tuning of aggregation-induced emission probes by flash nanoprecipitation: Shape and size effects on in vivo imaging[J]. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces, 2018, 10(30): 25186-25193.
|
[20] |
TAN Z, SHI Y, WEI T, et al.
Fast and facile preparation of S nanoparticles by flash nanoprecipitation for lithium–sulfur batteries[J]. New Journal of ChemistryNew Journal of Chemistry, 2020, 44(2): 466-471.
|
[21] |
ZHU Z, XU P, FAN G, et al.
Fast synthesis and separation of nanoparticles via in-situ reactive flash nanoprecipitation and pH tuning[J]. Chemical Engineering JournalChemical Engineering Journal, 2019, 356: 877-885.
doi: 10.1016/j.cej.2018.09.103
|
[22] |
D'ADDIO S M, PRUD'HOMME R K.
Controlling drug nanoparticle formation by rapid precipitation[J]. Advanced Drug Delivery ReviewsAdvanced Drug Delivery Reviews, 2011, 63(6): 417-426.
doi: 10.1016/j.addr.2011.04.005
|
[23] |
CHEN K, FU Z, WANG M, et al.
Preparation and characterization of size-controlled nanoparticles for high-loading lambda-cyhalothrin delivery through flash nanoprecipitation[J]. Journal of Agricultural and Food ChemistryJournal of Agricultural and Food Chemistry, 2018, 66(31): 8246-8252.
doi: 10.1021/acs.jafc.8b02851
|
[24] |
FU Z, LI L, WANG Y, et al.
Direct preparation of drug-loaded mesoporous silica nanoparticles by sequential flash nanoprecipitation[J]. Chemical Engineering JournalChemical Engineering Journal, 2020, 382: 122905-.
doi: 10.1016/j.cej.2019.122905
|
[25] |
FU Z, CHEN K, LI L, et al.
Spherical and spindle-like abamectin-loaded nanoparticles by flash nanoprecipitation for southern root-knot nematode control: preparation and characterization[J]. NanomaterialsNanomaterials, 2018, 8(6): 449-.
|
[26] |
马俊, 李莉, 王铭纬, 等.
基于瞬时纳米沉淀法制备尺寸可控载药纳米粒子[J]. 华东理工大学学报(自然科学版)华东理工大学学报(自然科学版), 2017, 43(5): 597-605.
|
[27] |
FU Z, LI L, WANG M, et al.
Size control of drug nanoparticles stabilized by mPEG-b-PCL during flash nanoprecipitation[J]. Colloid and Polymer ScienceColloid and Polymer Science, 2018, 296(5): 935-940.
doi: 10.1007/s00396-018-4311-1
|
[28] |
ZHU Z.
Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability[J]. BiomaterialsBiomaterials, 2013, 34(38): 10238-10248.
doi: 10.1016/j.biomaterials.2013.09.015
|
[29] |
刘靖康, 李猛, 王铭纬, 等.
基于瞬时纳米沉淀法的球形纳米粒子电荷及粒径调控[J]. 华东理工大学学报(自然科学版)华东理工大学学报(自然科学版), 2020, 46(3): 334-340.
|
[30] |
CUI B, FENG L, WANG C, et al.
Stability and biological activity evaluation of chlorantraniliprole solid nanodispersions prepared by high pressure homogenization[J]. Plos OnePlos One, 2016, 11(8): e0160877-.
doi: 10.1371/journal.pone.0160877
|
[31] |
WANG Y, MA Y, ZHENG Y, et al.
In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity[J]. International Journal of PharmaceuticsInternational Journal of Pharmaceutics, 2013, 441(1/2): 728-735.
|
[32] |
SHELAR D B, PAWAR S K, VAVIA P R.
Fabrication of isradipine nanosuspension by anti-solvent microprecipitation-high-pressure homogenization method for enhancing dissolution rate and oral bioavailability[J]. Drug Delivery Translational ResearchDrug Delivery Translational Research, 2013, 3(5): 384-391.
doi: 10.1007/s13346-012-0081-3
|
[33] |
MARTINEZ-SANCHEZ A, TARAZONA-DIAZ M P, GARCIA-GONZALEZ A, et al.
Effect of high-pressure homogenization on different matrices of food supplements[J]. Food Science and Technology InternationalFood Science and Technology International, 2016, 22(8): 708-719.
doi: 10.1177/1082013216642887
|
[34] |
WANG A, CUI J, WANG Y, et al.
Preparation and characterization of a novel controlled-release nano-delivery system loaded with pyraclostrobin via high-pressure homogenization[J]. Pest Management SciencePest Management Science, 2020, 76(8): 2829-2837.
doi: 10.1002/ps.5833
|
[35] |
PAN Z, CUI B, ZENG Z, et al.
Lambda-cyhalothrin nanosuspension prepared by the melt emulsification-high pressure homogenization method[J]. Journal of NanomaterialsJournal of Nanomaterials, 2015, 16: 123496-.
|
[36] |
LIANG Y, GUO M, FAN C, et al.
Development of novel urease-responsive pendimethalin microcapsules using silica-IPTS-PEI as controlled release carrier materials[J]. ACS Sustainable Chemistry & EngineeringACS Sustainable Chemistry & Engineering, 2017, 5(6): 4802-4810.
|
[37] |
ATTA S, PAUL A, BANERJEE R, et al.
Photoresponsive polymers based on a coumarin moiety for the controlled release of pesticide 2, 4-D[J]. RSC AdvancesRSC Advances, 2015, 5(121): 99968-99975.
doi: 10.1039/C5RA18944F
|
[38] |
GAO Z, YUAN P, WANG D, et al.
Photo-controlled release of fipronil from a coumarin triggered precursor[J]. Bioorganic & Medicinal Chemistry LettersBioorganic & Medicinal Chemistry Letters, 2017, 27(11): 2528-2535.
|
[39] |
XU Z, GAO Z, SHAO X.
Light-triggered release of insecticidally active spirotetramat-enol[J]. Chinese Chemical LettersChinese Chemical Letters, 2018, 29(11): 1648-1650.
doi: 10.1016/j.cclet.2018.01.025
|
[40] |
CHEN C, ZHANG G, DAI Z, et al.
Fabrication of light-responsively controlled-release herbicide using a nanocomposite[J]. Chemical Engineering JournalChemical Engineering Journal, 2018, 349: 101-110.
doi: 10.1016/j.cej.2018.05.079
|
[41] |
DING K, SHI L, ZHANG L, et al.
Synthesis of photoresponsive polymeric propesticide micelles based on PEG for the controlled release of a herbicide[J]. Polymer ChemistryPolymer Chemistry, 2016, 7(4): 899-904.
doi: 10.1039/C5PY01690H
|
[42] |
CAMARA M C, CAMPOS E V R, MONTEIRO R A, et al.
Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture[J]. Journal of NanobiotechnologyJournal of Nanobiotechnology, 2019, 17: 100-.
doi: 10.1186/s12951-019-0533-8
|
[43] |
HUANG B, CHEN F, SHEN Y, et al.
Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology[J]. NanomaterialsNanomaterials, 2018, 8(2): 102-.
doi: 10.3390/nano8020102
|
[44] |
XU X, BAI B, WANG H, et al.
A near-infrared and temperature-responsive pesticide release platform through core-shell polydopamine@PNIPAm nanocomposites[J]. ACS Applied Materials & InterfacesACS Applied Materials & Interfaces, 2017, 9(7): 6424-6432.
|
[45] |
GAO Y, XIAO Y, MAO K, et al.
Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery[J]. Chemical Engineering JournalChemical Engineering Journal, 2020, 383: 123169-.
doi: 10.1016/j.cej.2019.123169
|
[46] |
SHEN Y, WANG Y, ZHAO X, et al.
Preparation and physicochemical characteristics of thermo-responsive emamectin benzoate microcapsules[J]. Polymers (Basel)Polymers (Basel), 2017, 9(9): 418-.
|
[47] |
ZHANG Y, CHEN W, JING M, et al.
Self-assembled mixed micelle loaded with natural pyrethrins as an intelligent nano-insecticide with a novel temperature-responsive release mode[J]. Chemical Engineering JournalChemical Engineering Journal, 2019, 361: 1381-1391.
doi: 10.1016/j.cej.2018.10.132
|
[48] |
王宁, 齐麟, 王娅, 等.
温度响应型吡唑醚菌酯微囊的制备与性能表征[J]. 农药学学报农药学学报, 2017, 19(3): 381-387.
|
[49] |
KOCAK G, TUNCER C, BüTüN V.
pH-responsive polymers[J]. Polymer ChemistryPolymer Chemistry, 2017, 8(1): 144-176.
doi: 10.1039/C6PY01872F
|
[50] |
ZHAO M, ZHOU H, CHEN L, et al.
Carboxymethyl chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide[J]. Carbohydrate PolymersCarbohydrate Polymers, 2020, 243: 116433-.
doi: 10.1016/j.carbpol.2020.116433
|
[51] |
LIU G, LIN G, TAN M, et al.
Hydrazone-linked soybean protein isolate-carboxymethyl cellulose conjugates for pH-responsive controlled release of pesticides[J]. Polymer JournalPolymer Journal, 2019, 51(11): 1211-1222.
doi: 10.1038/s41428-019-0235-y
|
[52] |
XIANG Y, LU X, YUE J, et al.
Stimuli-responsive hydrogel as carrier for controlling the release and leaching behavior of hydrophilic pesticide[J]. Science of the Total EnvironmentScience of the Total Environment, 2020, 722: 137811-.
doi: 10.1016/j.scitotenv.2020.137811
|
[53] |
XIANG Y, ZHANG G, CHEN C, et al.
Fabrication of a pH-responsively controlled-release pesticide using an attapulgite-based Hydrogel[J]. ACS Sustainable Chemistry & EngineeringACS Sustainable Chemistry & Engineering, 2017, 6(1): 1192-1201.
|
[54] |
TONG M M, GAO W J, JIAO W T, et al.
Uptake, translocation, metabolism, and distribution of glyphosate in nontarget tea plant (Camellia sinensis L.)[J]. Journal of Agricultural and Food ChemistryJournal of Agricultural and Food Chemistry, 2017, 65(35): 7638-7646.
doi: 10.1021/acs.jafc.7b02474
|
[55] |
CHEN K, WANG Y, CUI H, et al.
Difunctional fluorescence nanoparticles for accurate tracing of nanopesticide fate and crop protection prepared by flash nanoprecipitation[J]. Journal of Agricultural and Food ChemistryJournal of Agricultural and Food Chemistry, 2020, 68(3): 735-741.
doi: 10.1021/acs.jafc.9b06744
|
[56] |
CAO L, ZHANG H, ZHOU Z, et al.
Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles[J]. NanoscaleNanoscale, 2018, 10(43): 20354-20365.
doi: 10.1039/C8NR04626C
|
[57] |
ZHAO X, CUI H, WANG Y, et al.
Development strategies and prospects of nano-based smart pesticide formulation[J]. Journal of Agricultural and Food ChemistryJournal of Agricultural and Food Chemistry, 2018, 66(26): 6504-6512.
doi: 10.1021/acs.jafc.7b02004
|
[58] |
ZHI H, YU M, YAO J, et al.
A facile approach to increasing the foliage retention of pesticides based on coating with a tannic acid/Fe3+ complex[J]. CoatingsCoatings, 2020, 10(4): 359-.
doi: 10.3390/coatings10040359
|
[59] |
HAO L, LIN G, LIAN J, et al.
Carboxymethyl cellulose capsulated zein as pesticide nano-delivery system for improving adhesion and anti-UV properties[J]. Carbohydrate PolymersCarbohydrate Polymers, 2020, 231: 115725-.
doi: 10.1016/j.carbpol.2019.115725
|
[60] |
YU M, SUN C, XUE Y, et al.
Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention[J]. RSC AdvancesRSC Advances, 2019, 9(46): 27096-27104.
doi: 10.1039/C9RA05843E
|
[61] |
JIA X, MA Z Y, ZHANG G X, et al.
Polydopamine film coated controlled-release multielement compound fertilizer based on mussel-inspired chemistry[J]. Journal of Agricultural and Food ChemistryJournal of Agricultural and Food Chemistry, 2013, 61(12): 2919-2924.
doi: 10.1021/jf3053059
|
[62] |
MA Z, JIA X, HU J, et al.
Mussel-inspired thermosensitive polydopamine-graft-poly(N-isopropylacrylamide) coating for controlled-release fertilizer[J]. Journal of Agricultural and Food ChemistryJournal of Agricultural and Food Chemistry, 2013, 61(50): 12232-12237.
doi: 10.1021/jf4038826
|
[63] |
MA Z Y, JIA X, ZHANG G X, et al.
pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator[J]. Journal of Agricultural and Food ChemistryJournal of Agricultural and Food Chemistry, 2013, 61(23): 5474-5482.
doi: 10.1021/jf401102a
|
[64] |
KANG J, BAI G, MA S, et al.
On-site surface coordination complexation via mechanochemistry for versatile metal-phenolic networks films[J]. Advanced Materials InterfacesAdvanced Materials Interfaces, 2019, 6(5): 1801789-.
doi: 10.1002/admi.201801789
|
[65] |
王云爱, 于海欧, 徐菊敏.
现代农业“水肥药一体化”技术[J]. 中国农业信息中国农业信息, 2013, (1): 89-.
|