[1] GUPTA A K, IBRAHIM S, SHOAIBI A A.  Advances in sulfur chemistry for treatment of acid gases[J]. Progress in Energy and Combustion Science, 2016, 54: 65-92.   doi: 10.1016/j.pecs.2015.11.001
[2] MAHDIPOOR H R, ASHKEZARI A D.  Feasibility study of a sulfur recovery unit containing mercaptans in lean acid gas feed[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 585-588.   doi: 10.1016/j.jngse.2016.03.045
[3] BASSANI A, PIROLA C, BOZZANO G, et al.  Technical Feasibility of AG2S™ Process Revamping[J]. Computer Aided Chemical Engineering, 2017, 40: 385-390.   doi: 10.1016/B978-0-444-63965-3.50066-0

陈赓良, 肖学兰, 杨仲熙, 等. 克劳斯法硫磺回收工艺技术[M]. 北京: 石油工业出版社, 2007.


MANENT F, PAPASODERO D, BOZZANO G, et al. Model-based optimization of sulfur recovery units. 2014, 66: 244-251.

[6] ZAREI S.  Life cycle assessment and optimization of Claus reaction furnace through kinetic modeling[J]. Chemical Engineering Research and Design, 2019, 148: 75-85.   doi: 10.1016/j.cherd.2019.06.005

DUSTIN D J. Steady state and dynamic modeling of the modified Claus process as part of an IGCC power plant[D]. American: West Virginia University, 2011.

[8] MOHAMMED S, RAJ A, SHOAIBI A A.  Effects of fuel gas addition to Claus furnace on the formation of soot precursors[J]. Combustion and Flame, 2016, 168: 240-254.   doi: 10.1016/j.combustflame.2016.03.008
[9] ASADI S, PAKIZEH M, CHENAR M P.  An investigation of reaction furnace temperatures and sulfur recovery[J]. Frontiers of Chemical Engineering in China, 2011, 5(3): 362-371.
[10] RAHMAN R K, IBRAHIM S, RAJ A.  Oxidative destruction of monocyclic and polycyclic aromatic hydrocarbon (PAH) contaminants in sulfur recovery units[J]. Chemical Engineering Science, 2016, 155: 348-365.   doi: 10.1016/j.ces.2016.08.027
[11] CHARDONNEAUA M, IBRAHIM S, GUOTA A K, et al.  Role of toluene and carbon dioxide on sulfur recovery efficiency in a Claus process[J]. Energy Procedia, 2015, 75: 3071-3075.   doi: 10.1016/j.egypro.2015.07.630
[12] SELIM H, GUPTA A K, SHOAIBI A A.  Effect of CO2 and N2 concentration in acid gas stream on H2S combustion[J]. Applied Energy, 2012, 98: 53-58.   doi: 10.1016/j.apenergy.2012.02.072
[13] IBRAHIM S, RAHMAN R K, RAJ A.  Effects of H2O in the feed of sulfur recovery unit on sulfur production and aromatics emission from Claus furnace[J]. Industrial and Engineering Chemistry Research, 2017, 56(41): 11713-11725.   doi: 10.1021/acs.iecr.7b02553
[14] IBRAHIM S, RAHMAN R K, RAJ A.  Roles of hydrogen sulfide concentration and fuel gas injection on aromatics emission from Claus furnace[J]. Chemical Engineering Science, 2017, 172: 513-527.   doi: 10.1016/j.ces.2017.06.050
[15] LIi Y, YU X, LI H, et al.  Detailed kinetic modeling of H2S oxidation with presence of CO2 under rich condition[J]. Applied Energy, 2017, 190: 824-834.   doi: 10.1016/j.apenergy.2016.12.150
[16] LI Y, GUO Q, YU X, et al.  Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame[J]. Applied Energy, 2017, 206: 905-958.
[17] LI Y, YU X, GUO Q, et al.  Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production[J]. Applied Energy, 2017, 208: 905-919.   doi: 10.1016/j.apenergy.2017.09.059
[18] KAZEMPOUR H, POURFAYAZ F, MEHRPOOYA M.  Modeling and multi-optimization of thermal section of Claus process based on kinetic model[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 235-244.   doi: 10.1016/j.jngse.2016.12.038
[19] HAWBOLDT, K. A., MONNERY, W D, SVRCEK W Y.  New experimental data and kinetic rate expression for H2S pyrolysis and re-association[J]. Chemical Engineering Science, 2000, 55(5): 957-966.   doi: 10.1016/S0009-2509(99)00366-8
[20] KARAN K, MEHROTRA A K, BEHIE L A.  COS-forming reaction between CO and sulfur: A high-temperature intrinsic kinetics study[J]. Industrial and Engineering Chemistry Research, 1998, 37(12): 4609-4616.   doi: 10.1021/ie9802966

KARAN K. An experimental and modeling study of homogeneous gas phase reactions occurring in the modified Claus process[D]. Canada: University of Calgary, 1998.


KARAN K, MEHROTRA A K, BEHIE L A. A high-temperature experimental and modeling study of homogeneous gas-phase COS reactions applied to Claus plants[J]. Chemical Engineering Science, 1999, 54(16): 2999-3006.

[23] TESNER P, NEMIROVSKII M, MOTYL D.  Kinetics of the thermal decomposition of hydrogen sulfide at 600—1200 ℃[J]. Kinetics and Catalysis, 1990, 31: 1081-1083.
[24] GAMSON B W, ELKNS R H.  Sulfur from hydrogen sulfide[J]. Chemical Engineering Process, 1953, 49(4): 203-205.
[25] 王青, 余小光, 乔明杰, 等.  基于序列二次规划算法的定位器坐标快速标定方法[J]. 浙江大学学报(工学版), 2017, 51(2): 319-327.