图共 8个 表共 5
    • 图  1  Aspen plus克劳斯硫回收过程流程图

      Figure 1.  A schematic diagram of the Claus process in Aspen plus

    • 图  2  氧气摩尔分数对克劳斯硫回收过程的影响

      Figure 2.  Effect of oxygen molar fraction on the performance of the Claus process

    • 图  3  氧气摩尔分数对n(H2S)/n(SO2)的影响

      Figure 3.  Effect of oxygen molar fraction on the n(H2S)/n(SO2)

    • 图  4  α对克劳斯硫回收过程的影响

      Figure 4.  Effect of α on the performance of the Claus process

    • 图  5  α对总硫收率和第一催化段出口处n(H2S)/n(SO2)的影响

      Figure 5.  Effect of α on the performance of the sulfur recovery efficiency and n(H2S)/n(SO2) of first catalysis stage

    • 图  6  氧气预热温度对克劳斯硫回收过程的影响

      Figure 6.  Effect of oxygen preheating temperature on the performance of the Claus process

    • 图  7  炉膛压力对克劳斯硫回收过程总硫收率的影响

      Figure 7.  Effect of furnace pressure on the sulfur recovery efficiency of the Claus process

    • 图  8  第二催化段反应器温度对克劳斯硫回收过程的影响

      Figure 8.  Effect of second catalysis stage reaction temperature on the performance of the Claus process

    • GasMolar fraction/%
      AG1AG2AG3AIR1
      H200.5012.400
      Ar000.200.93
      N229.0020.000.2078.09
      CO00.508.000
      CO220.0067.0075.000.03
      H2S50.002.001.000
      H2O003.000
      NH3000.200
      O200020.95
      CH3OH1.0010.0000

      表 1  进料气组分摩尔分数

      Table 1.  Gas molar composition of the inlet

    • ReactionNo.
      $ {\rm{N}}{{\rm{H}}}_{3} \to {\rm{0.5N}}_{{2}}{+1.5}{{\rm{H}}}_{{2}} $R1
      $ {{\rm{H}}_2}{\rm{S + 1}}{\rm{.5}}{{\rm{O}}_2} \to {{\rm{H}}_2}{\rm{O + S}}{{\rm{O}}_2}$R2

      表 2  RF1考虑的反应

      Table 2.  Considered reactions in RF1

    • ReactionReaction rate expressionsNo.Reference
      ${{\rm{H}}_{\rm{2}}}{\rm{S}} \leftrightarrow {{\rm{H}}_{\rm{2}}}{\rm{ + 0}}{\rm{.5}}{{\rm{S}}_{\rm{2}}}$$-{r_{ {\rm{ {H} }_2s} } }=1.63\times{10^{-1} }{ {\rm{e} }^{\dfrac{ {45.1} }{ {RT} } } }{P_{\rm{ { {H} }_2}S} }P_{\rm{S_2} }^{0.5}-1.36\times{10^{-6} }{ {\rm{e} }^{\dfrac{ {23.4} }{ {RT} } } }{P_{\rm{H_2} } }{P_{\rm{S_2} } }$R3[19]
      ${\rm{CO} } + 0.5{{\rm{S}}_2} \leftrightarrow {\rm{COS}}$$- {r_{ {\rm{CO} } } } = 3.18\times {10^5}{ {\rm{e} }^{\dfrac{ {15.3} }{ {RT } } } }\left( { {c_{\rm{CO} } }{c_{ { {\rm{S} }_2} } } - \dfrac{1}{ { {k_{\rm{eq2} } } } }{c_{\rm{COS} } }c_{ { {\rm{S} }_2} }^{0.5} } \right)$R4[20]
      $ {\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{ + }}{{\rm{H}}_{\rm{2}}} \leftrightarrow {\rm{CO + }}{{\rm{H}}_{\rm{2}}}{\rm{O}}$$-{r_{\rm{C{O_2} } } }=8.59\times{10^{10} }{ {\rm{e} }^{\dfrac{ {64.7} }{ {RT} } } }\left( { {c_{\rm{C{O_2} }} }c_{ {\rm{ {H} }_2} }^{0.5}-\dfrac{1}{ {\rm{k_{eq3} } } }\dfrac{ { {c_{\rm{CO} } }{c_{ {\rm{ {H} }_2O} } } } }{ {c_{ {\rm{ {H} }_2} }^{0.5} } } } \right)$R5[21]
      $ {\rm{CO + }}{{\rm{H}}_{\rm{2}}}{\rm{S}} \leftrightarrow {\rm{COS + }}{{\rm{H}}_{\rm{2}}} $$-r{\rm{_{CO} } }=1.59\times{10^5}{ {\rm{e} }^{\dfrac{ {26.5} }{ {RT} } } }\left({ {c_{\rm{CO} } }c_{ {\rm{ {H} }_2S} }^{0.5}-\dfrac{1}{ {\rm{k_{eq4} } } }\dfrac{ { {c_{\rm{COS} } }{c_{ {\rm{ {H} }_2} } } } }{ {c_{ {\rm{ {H} }_2S}}^{0.5} } } }\right)$R6[22]
      $ {{\rm{H}}_{\rm{2}}}{\rm{S + 0}}{\rm{.5S}}{{\rm{O}}_{\rm{2}}} \leftrightarrow {\rm{0}}{\rm{.75}}{{\rm{S}}_{\rm{2}}}{\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{O}}$$-{r_{ {\rm{ {H} }_2}S} }=3.18\times{10^3}{ {\rm{e} }^{\dfrac{ {14.3} }{ {RT} } } }{c_{ {\rm{ {H} }_2S}} }c_{\rm{S{O_2} } }^{0.5}-3.11\times{10^1}{ {\rm{e} }^{\dfrac{ {8.5} }{ { {RT} } } }}{c_{\rm{ { { {H} }_2}O} } }c_{ {\rm{S_2} } }^{0.75}$R7[23]

      表 3  RF2内考虑的反应及其动力学参数

      Table 3.  Kinetic parameters and reactions of RF2

    • Gasq/(kmol·h−1)
      Plant dateSimulated resultsAbsolute error/%
      H21.6361.6983.81
      Ar0.6000.6000.01
      N263.45363.4480.01
      CO1.0381.23318.77
      CO227.07926.8680.78
      H2S9.1559.1750.22
      COS0.1190.13312.13
      SO24.6374.7893.27
      H2O17.93017.8360.53
      S25.4585.3871.31

      表 4  炉膛出口气模拟结果与工厂工况比较结果

      Table 4.  Simulated results versus plant data for composition of gas from furnace

    • Important parametersOperating parametersOptimization results
      x(O2)/%20.9599.60
      Split ratio0.801.00
      Air molar flow/kmol·h−160.9014.09
      T0/℃80.0025.00
      Ta/℃240.0025.00
      Ts/℃218.00180.00
      Tf/℃1019.391314.11
      YS/%98.3199.08
      n(H2S)/n(SO2) of first catalysis stage1.992.00
      Outlet SO2 mole flow of off-gas/kmol·h−10.3500.278

      表 5  优化结果与运行工况重要参数比较

      Table 5.  Important parameters of the optimization results compared with operating condition’s