[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.  Electric field effect in atomically thin carbon films[J]. Science,, 2004, 306(5696): 666-669.   doi: 10.1126/science.1102896
[2] NETO A H C, GUINEA F, PERES N M R, et al.  The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.   doi: 10.1103/RevModPhys.81.109
[3] BOLOTIN K I, SIKES K J, JIANG Z, et al.  Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9): 351-355.
[4] DU X, SKACHKO I, BARKER A, et al.  Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnology, 2008, 3(8): 491-495.   doi: 10.1038/nnano.2008.199
[5] LEE C, WEI X, KYSAR J W, et al.  Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.   doi: 10.1126/science.1157996
[6] 吴涛, 蒋业华, 张晓伟.  铜基板上CVD法生长单晶石墨烯及研究状况[J]. 功能材料, 2015, 46(16): 16037-16043+16051.
[7] LEE D, KWON G D, KIM J H, et al.  Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition[J]. Nanoscale, 2014, 6(21): 12943-12951.   doi: 10.1039/C4NR03633F
[8] ZHANG Z H, XU X Z, QIU L, et al.  The Way towards Ultrafast Growth of Single-Crystal Graphene on Copper[J]. Advanced Science, 2017, 4(9): 1700087-.   doi: 10.1002/advs.201700087
[9] BRAEUNINGER-WEIMER P, BRENNAN B, POLLARD A J, et al.  Understanding and controlling cu catalyzed graphene nucleation: The role of impurities, roughness and oxygen scavenging[J]. Chemistry of Materials, 2016, 28(24): 8905-8915.   doi: 10.1021/acs.chemmater.6b03241
[10] HAO Y F, BHARATHI M S, WANG L, et al.  The role of surface oxygen in the growth of large single-crystal graphene on copper[J]. Science, 2013, 342(6159): 720-723.   doi: 10.1126/science.1243879
[11] NAM J, KIM D C, YUN H, et al.  Chemical vapor deposition of graphene on platinum: Growth and substrate interaction[J]. Carbon, 2017, 111: 733-740.   doi: 10.1016/j.carbon.2016.10.048
[12] ZHOU H L, YU W J, LIU L X, et al.  Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene[J]. Nature Communications, 2013, : 4-.
[13] LI X S, CAI W W, AN J H, et al.  Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.   doi: 10.1126/science.1171245
[14] VLASSIOUK I, REGMI M, FULVIO P, et al.  Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene[J]. ACS Nano, 2011, 5(7): 6069-6076.   doi: 10.1021/nn201978y
[15] ZHANG X Y, WANG L, XIN J, et al.  Role of hydrogen in graphene chemical vapor deposition growth on a copper surface[J]. Journal of the American Chemical Society, 2014, 136(8): 3040-3047.   doi: 10.1021/ja405499x
[16] MU H C, ZHANG Z Q, WANG K K, et al.  High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films[J]. Applied Physics Letters, 2014, 105(3): 033107-.   doi: 10.1063/1.4890583
[17] LOGINOVA E, BARTELT N C, FEIBELMAN P J, et al.  Factors influencing graphene growth on metal surfaces[J]. New Journal of Physics, 2009, 11(6): 063046-.   doi: 10.1088/1367-2630/11/6/063046
[18] SONG Y N, PAN D Y, CHENG Y, et al.  Growth of large graphene single crystal inside a restricted chamber by chemical vapor deposition[J]. Carbon, 2015, 95: 1027-1032.   doi: 10.1016/j.carbon.2015.08.115
[19] BARTELTAL N C, MCCARTYA K F.  Graphene growth on metal surfaces[J]. MRS Bulletin, 2012, 37: 1158-1165.   doi: 10.1557/mrs.2012.237
[20] ESHKALAK M A, ANVARIFARD M K.  A novel graphene nanoribbon FET with an extra peak electric field (EFP-GNRFET) for enhancing the electrical performances[J]. Physics Letters A, 2017, 381(16): 1379-1385.   doi: 10.1016/j.physleta.2017.02.032
[21] DONG J Y, LIU S, FU Y Z, et al.  Investigation of strain-induced modulation on electronic properties of graphene field effect transistor[J]. Physics Letters A, 2017, 381(4): 292-297.   doi: 10.1016/j.physleta.2016.11.003