[1] JIN J, SELLERS E W, ZHOU S, et al.  A P300 brain-computer interface based on a modification of the mismatch negativity paradigm[J]. International Journal of Neural Systems, 2015, 25(3): 1550011-.   doi: 10.1142/S0129065715500112
[2]

SUN H, ZHANG Y, GLUCKMAN B J, et al. Optimal-channel selection algorithms in mental tasks based brain-computer interface[C]// Proceedings of the 2018 8th International Conference on Bioscience, Biochemistry and Bioinformatics. USA: ACM, 2018: 118-123.

[3] SI Y, WU X, LI F, et al.  Different decision-making responses occupy different brain networks for information processing: A study based on EEG and TMS[J]. Cerebral Cortex, 2019, 29(10): 4119-4129.   doi: 10.1093/cercor/bhy294
[4]

AL-ANI A, AL-SUKKER A. Effect of feature and channel selection on EEG classification[C]// 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. USA: IEEE, 2006: 2171-2174.

[5] POPESCU F, FAZLI S, BADOWER Y, et al.  Single trial classification of motor imagination using 6 dry EEG electrodes[J]. Plos One, 2007, 2(7): e637-.   doi: 10.1371/journal.pone.0000637
[6] 冯建奎, 金晶, 王蓓, 等.  基于SVM_RFE的多任务导联选择算法建模[J]. 系统仿真学报, 2018, 30(12): 4506-4512.
[7] GE S, WANG R, YU D.  Classification of four-class motor imagery employing single-channel electroencephalography[J]. Plos One, 2014, 9(6): e98019-.   doi: 10.1371/journal.pone.0098019
[8] 张德明, 殷国栋, 金贤建, 等.  基于CSP和SFFS-SFBS的两级双向脑电导联特征选取方法[J]. 东南大学学报(自然科学版), 2019, 49(1): 125-132.   doi: 10.3969/j.issn.1001-0505.2019.01.018
[9] 陈书立, 李新建, 胡玉霞, 等.  互信息引导下的前向搜索脑-机接口导联选择算法[J]. 计算机应用研究, 2018, 35(4): 1080-1083, 1087.   doi: 10.3969/j.issn.1001-3695.2018.04.026
[10] GAUR P, PACHORI R B, WANG H, et al.  A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry[J]. Expert Systems with Applications, 2018, 95: 201-211.   doi: 10.1016/j.eswa.2017.11.007
[11] XU Y, WEI Q, ZHANG H, et al.  Transfer learning based on regularized common spatial patterns using cosine similarities of spatial filters for motor-imagery BCI[J]. Journal of Circuits, Systems and Computers, 2019, 28(7): 1-19.   doi: 10.1142/S0218126619501238
[12] JIN J, MIAO Y, DALY I, et al.  Correlation-based channel selection and regularized feature optimization for MI-based BCI[J]. Neural Networks, 2019, 118: 262-270.   doi: 10.1016/j.neunet.2019.07.008
[13] JIAO Y, ZHANG Y, CHEN X, et al.  Sparse group representation model for motor imagery EEG classification[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 23(2): 631-641.
[14]

KOHAVI R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]// 14 th International Joint Conference on Artificial Intelligenc. Montreal, Canada: ACM, 1995: 1137-1145.

[15]

AL MOUBAYED N, HASAN B A S, GAN J Q, et al. Binary-SDMOPSO and its application in channel selection for brain-computer interfaces[C]//2010 UK Workshop on Computational Intelligence (UKCI). Colchester, UK: IEEE, 2010: 1-6.

[16] QIU Z, JIN J, LAM H K. et al.  Improved SFFS method for channel selection in motor imagery based BCI[J]. Neurocomputing, 2016, 207: 519-527.   doi: 10.1016/j.neucom.2016.05.035
[17]

BARACHANT A, BONNET S. Channel selection procedure using Riemannian distance for BCI applications[C]//2011 5th International IEEE/EMBS Conference on Neural Engineering. Cancun, Mexico: IEEE, 2011: 348-351.

[18] ARVANEH M, GUAN C, ANG K K, et al.  Optimizing the channel selection and classification accuracy in EEG-based BCI[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(6): 1865-1873.   doi: 10.1109/TBME.2011.2131142
[19] BELWAFI K, ROMAIN O, GANNOUNI S, et al.  An embedded implementation based on adaptive filter bank for brain-computer interface systems[J]. Journal Neuroscience Method, 2018, 305: 1-16.   doi: 10.1016/j.jneumeth.2018.04.013
[20] FENG J K, JIN J, DALY I. et al.  An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system[J]. Computation Intelligence and Neurosience, 2019, (6): 1-10.