[1] 李雪琴, 曹利, 于胜楠, 等.  石脑油高效资源化研究进展[J]. 化工学报, 2015, 66(9): 3287-3295.
[2] 赵岩, 何小荣, 邱彤, 等.  乙烯热裂解炉模拟平台的开发及应用[J]. 计算机与应用化学, 2006, 23(11): 1065-1068.   doi: 10.3969/j.issn.1001-4160.2006.11.007
[3] 张利军, 张永刚, 王国清.  石脑油裂解反应模型研究及应用进展[J]. 化工进展, 2010, 29(8): 1411-1417.
[4] 王国清, 杜志国, 张利军, 等.  应用BP神经网络预测石脑油热裂解产物收率[J]. 石油化工, 2007, 36(7): 699-704.   doi: 10.3321/j.issn:1000-8144.2007.07.011
[5] 郝红, 熊国华, 张粉艳, 等.  烃类裂解烯烃产率分布模型[J]. 西北大学学报(自然科学版), 2001, 31(2): 135-138.
[6] KEYVANLOO K, SEDIGHI M, TOWFIGHI J.  Genetic algorithm model development for prediction of main products in thermal cracking of naphtha: Comparison with kinetic modeling[J]. Chemical Engineering Journal, 2012, 209: 255-262.   doi: 10.1016/j.cej.2012.07.130
[7] 张红梅, 王宗祥.  轻质油裂解炉反应管的二维数学模型[J]. 石油学报(石油加工), 1995, 11(4): 68-77.
[8] SUNDARAM K M, FROMENT G F.  Modeling of thermal cracking kinetics. 3. Radical mechanisms for the pyrolysis of simple paraffins, olefins, and their mixtures[J]. Industrial & Engineering Chemistry Fundamentals, 1978, 17(3): 174-182.
[9] JOO E, PARK S, LEE M.  Pyrolysis reaction mechanism for industrial naphtha cracking furnaces[J]. Industrial & Engineering Chemistry Research, 2001, 40(11): 2409-2415.
[10] HIRATO M, YOSHIOKA S.  Simulations of the pyrolysis of naphtha, kerose, and gas oil with a tubular reactor[J]. International Chemical Engineering, 1973, 13(12): 347-354.
[11] WANG F, XU Y, REN J, et al.  Experimental investigation and modeling of steam cracking of Fischer–Tropsch naphtha for light olefins[J]. Chemical Engineering and Processing, 2010, 49(1): 51-58.   doi: 10.1016/j.cep.2009.11.005
[12] KUMAR P, KUNZRU D.  Modeling of naphtha pyrolysis[J]. Industrial & Engineering Chemistry Process Design & Development, 1985, 24(3): 774-782.
[13] STORN R, PRICE K.  Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.   doi: 10.1023/A:1008202821328
[14] PRICE K V, STORN R M, LAMPINEN J A.  Differential evolution: A practical approach to global optimization[J]. Natural Computing, 2005, 141(2): 341-359.
[15] 刘波, 王凌, 金以慧.  差分进化算法研究进展[J]. 控制与决策, 2007, 22(7): 3-11.
[16] GHOSH A, DAS S, CHOWDHURY A, et al.  An improved differential evolution algorithm with fitness-based adaptation of the control parameters[J]. Information Sciences, 2011, 181(18): 3749-3765.   doi: 10.1016/j.ins.2011.03.010
[17] QIN A K, HUANG V L, SUGANTHAN P N.  Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398-417.   doi: 10.1109/TEVC.2008.927706
[18] FAN H Y, LAMPINEN J.  A trigonometric mutation operation to differential evolution[J]. Journal of Global Optimization, 2003, 27(1): 105-129.   doi: 10.1023/A:1024653025686
[19] DAS S, ABRAHAM A, CHAKRABORTY U K, et al.  Differential evolution using a neighborhood-based mutation operator[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 526-553.   doi: 10.1109/TEVC.2008.2009457
[20] 徐斌, 陶莉莉, 程武山.  一种自适应多策略差分进化算法及其应用[J]. 化工学报, 2016, 67(12): 5190-5198.
[21] DAS S, SUGANTHAN P N.  Differential evolution: A survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31.   doi: 10.1109/TEVC.2010.2059031
[22]

SUN J, ZHANG Q, TSANG E P K. DE/EDA: A New Evolutionary Algorithm for Global Optimization[M]. USA: Elsevier Science Inc. 2005.

[23]

HAO Z F, GUO G H, HUANG H. A particle swarm optimization algorithm with differential evolution[C]// International Conference on Machine Learning & Cybernetics. Hong Kong, China: IEEE, 2007: 1031-1035.

[24] 魏民, 杨明磊, 钱锋.  带有精英保留机制的混合差分化学反应算法[J]. 化工学报, 2015, 66(1): 316-325.   doi: 10.11949/j.issn.0438-1157.20141472
[25] STORN R, PRICE K.  Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.   doi: 10.1023/A:1008202821328
[26] MALLIPEDDI R, SUGANTHAN P N, PAN Q K, et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing, 2011, 11(2): 1679-1696.   doi: 10.1016/j.asoc.2010.04.024
[27]

PAVLIDIS N G, PLAGIANAKOS V P, TASOULIS D K, et al. Human designed vs. genetically programmed differential evolution operators[C]//IEEE International Conference on Evolutionary Computation. Canada: IEEE, 2006: 1880-1886.

[28] LIU J, LAMPINEN J.  A fuzzy adaptive differential evolution algorithm[J]. Soft Computing, 2005, 9(6): 448-462.   doi: 10.1007/s00500-004-0363-x
[29] BREST J, GREINER S, BOSKOVIC B, et al.  Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646-657.   doi: 10.1109/TEVC.2006.872133
[30] BREST J, BOŠKOVIĆ B, GREINER S, et al.  Performance comparison of self-adaptive and adaptive differential evolution algorithms[J]. Soft Computing, 2007, 11(7): 617-629.   doi: 10.1007/s00500-006-0124-0
[31] 方强, 陈德钊, 俞欢军, 等.  基于优进策略的差分进化算法及其化工应用[J]. 化工学报, 2004, 55(4): 598-602.   doi: 10.3321/j.issn:0438-1157.2004.04.019
[32] ZHANG J Q, SANDERSON A C.  JADE: Adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958.   doi: 10.1109/TEVC.2009.2014613
[33] NERI F, TIRRONEN V.  Recent advances in differential evolution: A survey and experimental analysis[J]. Artificial Intelligence Review, 2010, 33(1/2): 61-106.