[1] THEVENET F, DEBONO O, RIZK M, et al.  VOC uptakes on gypsum boards: Sorption performances and impact on indoor air quality[J]. Building & Environment, 2018, 137: 138-146.
[2] COHEN M A, RYAN P B, YANAGISAWA Y, et al.  The validation of a passive sampler for indoor and outdoor concentrations of volatile organic compounds[J]. Air Repair, 1990, 40(7): 993-997.
[3] KIM Y M, STUART H A, HARRISONR M.  Concentrations and sources of VOCs in urban domestic and public microenvironments[J]. Environmental Science & Technology, 2016, 35(6): 997-1004.
[4] KIM S.  The reduction of formaldehyde and VOCs emission from wood-based flooring by green adhesive using cashew nut shell liquid[J]. Journal of Hazardous Materials, 2010, 182(13): 919-922.
[5] LIU Y, ZHU X.  Measurement of formaldehyde and VOCs emissions from wood-based panels with nanomaterial-added melamine-impregnated paper[J]. Construction and Building Materials, 2014, 66: 132-137.   doi: 10.1016/j.conbuildmat.2014.05.088
[6] CHIA W T, CHANG T C, CHYOW S C, et al.  Study on the indoor volatile organic compound treatment and performance assessment with TiO2/MCM-41 and TiO2/quartz photoreactor under ultraviolet irradiation[J]. Journal of the Air & Waste Management Association, 2008, 58(10): 1266-1273.
[7] PAPAEFTHIMIOU P, IOANNIDES T, VERYKIOS X E.  VOC removal: Investigation of ethylacetate oxidation over supported Pt catalysts[J]. Catalysis Today, 1999, 54(1): 81-92.   doi: 10.1016/S0920-5861(99)00170-4
[8] KIM K J, KANG C S, YOU Y J, et al.  Adsorption-desorption characteristics of VOCs over impregnated activated carbons[J]. Catalysis Today, 2006, 111(3): 223-228.
[9] DUNN R F, EL-HALWAGI M M.  Optimal design of multicomponent VOC condensation systems[J]. Journal of Hazardous Materials, 1994, 38: 187-206.   doi: 10.1016/0304-3894(94)00014-X
[10] EINAGA H, FUTAMURA S.  Catalytic oxidation of benzene with ozone over Mn ion-exchanged zeolites[J]. Catalysis Communications, 2008, 8(3): 557-560.
[11] MONTINI T, MELCHIONNA M, MONAI M, et al.  Fundamentals and catalytic applications of CeO2-based materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041.   doi: 10.1021/acs.chemrev.5b00603
[12] KONSOLAKIS M, SÓNIA A C C, TAVARES P B, et al.  Redox properties and VOC oxidation activity of Cu catalysts supported on Ce1−xSmxOδ mixed oxides[J]. Journal of Hazardous Materials, 2013, 261: 512-521.   doi: 10.1016/j.jhazmat.2013.08.016
[13] BONINGARI T, PANAGIOTIS G S.  Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations[J]. Journal of Catalysis, 2012, 288: 74-83.
[14] JIAN Y, FENG G, WANG Y, et al.  Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J]. Applied Catalysis B: Environmental, 2010, 95: 160-168.
[15] ARSHADI M, GHIACI M, RAHMANIAN A, et al.  Oxidation of ethylbenzene to acetophenone by a Mn catalyst supported on a modified nanosized SiO2/Al2O3 mixed-oxide in supercritical carbon dioxide[J]. Applied Catalysis B: Environmental, 2012, 119/120: 81-90.   doi: 10.1016/j.apcatb.2012.02.019
[16] BHANDARY N, INGOLE P P, BASU S.  Electrosynthesis of Mn-Fe oxide nanopetals on carbon paper as bi-functional electrocatalyst for oxygen reduction and oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3165-3171.   doi: 10.1016/j.ijhydene.2017.12.102
[17] VERHOEVEN J D, CHUEH S C, GIBSON E D.  Strength and conductivity of in situ Cu-Fe alloys[J]. Journal of Materials Science, 1989, 24(5): 1748-1752.   doi: 10.1007/BF01105700
[18] QUAN X, YANG W, CUI S, et al.  Sulfur resistance of Ce-Mn/TiO2 catalysts for low-temperature NH3-SCR[J]. Royal Society Open Science, 2018, 5(3): 171846-.   doi: 10.1098/rsos.171846
[19] CHEN J, CHEN X, XU W, et al.  Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chemical Engineering Journal, 2017, 330: 281-293.   doi: 10.1016/j.cej.2017.07.147
[20] EINAGA H, MAEDA N, YAMAMOTO S, et al.  Catalytic properties of copper-manganese mixed oxides supported on SiO2 for benzene oxidation with ozone[J]. Catalysis Today, 2015, 245: 22-27.   doi: 10.1016/j.cattod.2014.09.018
[21] WANG L, ZHANG H P, YAN Y, et al.  Total oxidation of isopropanol over manganese oxide modified ZSM-5 zeolite membrane catalysts[J]. Rsc Advances, 2015, 5(37): 29482-29490.   doi: 10.1039/C4RA15730C
[22] JIANG H, SUN T, LI C, et al.  Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances[J]. Journal of Materials Chemistry, 2012, 22: 2751-2756.   doi: 10.1039/C1JM14732C
[23] BAI B Y, LI J H, HAO J M.  1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol[J]. Applied Catalysis: B. Environmental, 2015, 164: 241-250.   doi: 10.1016/j.apcatb.2014.08.044
[24] ZHANG J H, LI Y B, WANG L, et al.  Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catalysis Science & Technology, 2015, 5: 2305-2313.   doi: 10.1039/C4CY01461H
[25] TIAN Z Y, PATRICK H T N, VANNIER V, et al.  Catalytic oxidation of VOCs over mixed Co-Mn oxides[J]. Applied Catalysis: B. Environmental, 2012, 117/118: 125-134.   doi: 10.1016/j.apcatb.2012.01.013
[26] DELIMARIS D, IOANNIDES T.  VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method[J]. Applied Catalysis: B. Environmental, 2009, 84: 303-312.
[27] BALDI M, FINOCCHIO E, MILELLA F, et al.  Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4[J]. Applied Catalysis: B. Environmental, 1998, 16: 43-51.
[28] LIN Y U, SUN M, JIAN Y U, et al.  Synthesis and characterization of manganese oxide octahedral molecular sieve and its catalytic performance for DME combustion[J]. Chinese Journal of Catalysis, 2008, 29(11): 1127-1132.