[1] 张昱, 唐妹, 田哲, 等.  制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 1-14.   doi: 10.12030/j.cjee.201801010
[2] MÉNDEZ-DíAZ J D, PRADOS-JOYA G, RIVERA-UTRILLA J, et al.  Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase[J]. Journal of Colloid and Interface Science, 2010, 345(2): 481-490.   doi: 10.1016/j.jcis.2010.01.089
[3] CHEN H, GAO B, LI H.  Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide[J]. Journal of Hazardous Materials, 2015, 282: 201-207.   doi: 10.1016/j.jhazmat.2014.03.063
[4] ESSINGTON M E, LEE J, SEO Y.  Adsorption of antibiotics by montmorillonite and kaolinite[J]. Soil Science Society of America Journal, 2010, 74(5): 1577-1588.   doi: 10.2136/sssaj2009.0283
[5] ZHANG M, LI A, ZHOU Q, et al.  Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins[J]. Microporous and Mesoporous Materials, 2014, 184: 105-111.   doi: 10.1016/j.micromeso.2013.10.010
[6] JI L, LIU F, XU Z, et al.  Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro-and mesoporous carbons[J]. Environmental Science & Technology, 2010, 44(8): 3116-3122.
[7] LIU M, HOU L, YU S, et al.  MCM-41 impregnated with a zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution[J]. Chemical Engineering Journal, 2013, 223: 678-687.   doi: 10.1016/j.cej.2013.02.088
[8] CHEN L C, LEI S, WANG M Z, et al.  Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline[J]. Chinese Chemical Letters, 2016, 27(4): 511-517.   doi: 10.1016/j.cclet.2016.01.057
[9] SEO P W, KHAN N A, JHUNG S H.  Removal of nitroimidazole antibiotics from water by adsorption over metal-organic frameworks modified with urea or melamine[J]. Chemical Engineering Journal, 2017, 315: 92-100.   doi: 10.1016/j.cej.2017.01.021
[10] DONG J, XU F F, LIU Z, et al.  Porous covalent organic gels: Design, synthesis and fluoroquinolones adsorption[J]. Chemistry Select, 2018, 3(48): 13624-13628.   doi: 10.1002/slct.201803079
[11] CÔTÉ A P, BENIN A I, OCKWIG N W, et al.  Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170.   doi: 10.1126/science.1120411
[12] FURUKAWA H, Yaghi O M.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883.   doi: 10.1021/ja9015765
[13] GOMES R, BHANJA P, BHAUMIK A.  A triazine-based covalent organic polymer for efficient CO2 adsorption[J]. Chemical Communications, 2015, 51(49): 10050-10053.   doi: 10.1039/C5CC02147B
[14] SUN Q, AGUILA B, PERMAN J, et al.  Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal[J]. Journal of the American Chemical Society, 2017, 139(7): 2786-2793.   doi: 10.1021/jacs.6b12885
[15] 符嫦娥, 陈婉, 戴朝霞, 等.  磁性共价有机框架材料吸附甲基橙和茜素绿两种阴离子有机染料[J]. 应用化学, 2018, 35(5): 594-599.   doi: 10.11944/j.issn.1000-0518.2018.05.170193
[16] ZHU X, TIAN C, MAHURIN S M, et al.  A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation[J]. Journal of the American Chemical Society, 2012, 134(25): 10478-10484.   doi: 10.1021/ja304879c
[17] FANG Q, ZHUANG Z, GU S, et al.  Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nature Communications, 2014, 5: 4503-4510.   doi: 10.1038/ncomms5503
[18] 史学伟, 昌慧, 赵双良, 等.  mSiO2-IDA对Cu2+、Cd2+金属离子的吸附[J]. 华东理工大学学报(自然科学版), 2018, 44(2): 182-188.
[19] SHI Y, YANG Z, WANG B, et al.  Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu2O-TiO2 composite[J]. Applied Clay Science, 2016, 119: 311-320.   doi: 10.1016/j.clay.2015.10.033
[20] LIU M, LIU Y, BAO D, et al.  Effective removal of tetracycline antibiotics from water using hybrid carbon membranes[J]. Scientific Reports, 2017, 7: 43717-43724.   doi: 10.1038/srep43717
[21] GAO Y, LI Y, ZHANG L, et al.  Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide[J]. Journal of Colloid and Interface Science, 2012, 368(1): 540-546.   doi: 10.1016/j.jcis.2011.11.015
[22] CHAO Y, ZHU W, WU X, et al.  Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic[J]. Chemical Engineering Journal, 2014, 243: 60-67.   doi: 10.1016/j.cej.2013.12.048
[23] KONWAR A, GOGOI A, CHOWDHURY D.  Magnetic alginate-Fe3O4 hydrogel fiber capable of ciprofloxacin hydrochloride adsorption/separation in aqueous solution[J]. RSC Advances, 2015, 5(99): 81573-81582.   doi: 10.1039/C5RA16404D
[24] WANG C J, LI Z, JIANG W T.  Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals[J]. Applied Clay Science, 2011, 53(4): 723-728.   doi: 10.1016/j.clay.2011.06.014
[25] WU Q, YANG X, LIU J, et al.  Topotactic growth, selective adsorption, and adsorption-driven photocatalysis of protonated layered titanate nanosheets[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17730-17739.
[26] WAN S, HUA Z, SUN L, et al.  Biosorption of nitroimidazole antibiotics onto chemically modified porous biochar prepared by experimental design: Kinetics, thermodynamics, and equilibrium analysis[J]. Process Safety and Environmental Protection, 2016, 104: 422-435.   doi: 10.1016/j.psep.2016.10.001
[27] LI Z, CHANG P H, JEAN J S, et al.  Interaction between tetracycline and smectite in aqueous solution[J]. Journal of Colloid and Interface Science, 2010, 341(2): 311-319.   doi: 10.1016/j.jcis.2009.09.054