[1] SOKOLOVA A D, SAVCHENKO A V.  Computation-efficient face recognition algorithm using a sequential analysis of high dimensional neural-net features[J]. Optical Memory and Neural Networks, 2020, 29(1): 19-29.   doi: 10.3103/S1060992X2001004X
[2] OH K, KIM S, OH I S.  Salient explanation for fine-grained classification[J]. IEEE Access, 2020, 8: 6143361441-.
[3] YANG R, SINGH S K, TAVAKKOLI M, et al.  CNN-LSTM deep learning architecture for computer vision-based modal frequency detection[J]. Mechanical Systems and Signal Processing, 2020, 144: 106885-.   doi: 10.1016/j.ymssp.2020.106885
[4]

WANG D, XU K, JIA Q, et al. ABM-SpConv: A novel approach to FPGA-based acceleration of convolutional neural network inference[C]//Proceedings of the 56th Annual Design Automation Conference. Las Vegas, USA: ACM, 2019: 1-6.

[5]

CHEN X Z, KUNDU K, ZHU Y. 3D Object proposals for accurate object class detection[C]//International Conference on Neural Information Processing Systems. USA: MIT Press, 2015: 424-432.

[6] DU Z, FASTHUBER R, CHEN T, et al.  ShiDianNao: Shifting vision processing closer to the sensor[J]. ACM Sigarch Computer Architecture News, 2015, 43(3): 92-104.
[7]

ZHANG C, LI P, SUN G G, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks[C]//Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. USA: ACM, 2015: 161-170.

[8]

LI H, FAN X, JIAO L, et al. A high performance FPGA-based accelerator for large-scale convolutional neural networks[C]//2016 26th International Conference on Field Programmable Logic and Applications (FPL). Switzerland: IEEE, 2016: 1-9.

[9]

QIU J, WANG J, YAO S, et al. Going deeper with embedded fpga platform for convolutional neural network[C]//Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. USA: ACM, 2016: 26-35.

[10]

REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2016: 779-788.

[11]

PEEMEN M, SETIO A, MESMAN B, et al. Memory-centric accelerator design for convolutional neural networks[C]// IEEE International Conference on Computer Design. USA: IEEE, 2013: 13-19.

[12] NGUYEN D, NGUYEN T, KIM H, et al.  A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(8): 1861-1873.   doi: 10.1109/TVLSI.2019.2905242
[13]

NAKAHARA H, YONEKAWA H, FUJII T, et al. A lightweight yolov2: A binarized CNN with a parallel support vector regression for an FPGA[C]//Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. USA: ACM, 2018: 31-40.

[14]

HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. USA: IEEE, 2016: 770-778.

[15] 赵澜涛, 林家骏.  基于双路CNN的多姿态人脸识别方法[J]. 华东理工大学学报(自然科学版), 2019, 45(3): 466-470.
[16]

LARKIN D, KINANE A, O’CONNOR N. Towards hardware acceleration of neuroevolution for multimedia processing applications on mobile devices[C]//International Conference on Neural Information Processing. Berlin, Heidelberg: Springer, 2006: 1178-1188.

[17] FARABET C, LECUN Y, KAVUKCUOGLU K, et al.  Large-scale FPGA-based convolutional networks[J]. Scaling up Machine Learning: Parallel and Distributed Approaches, 2011, 13(3): 399-419.
[18] CHEN T, DU Z, SUN N, et al.  Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning[J]. ACM Sigarch Computer Architecture News, 2014, 42(1): 269-284.   doi: 10.1145/2654822.2541967
[19]

CHEN Y, LUO T, LIU S, et al. Dadiannao: A machine-learning supercomputer[C]//2014 47th Annual IEEE/ACM International Symposium on Microarchitecture. UK: IEEE, 2014: 609-622.

[20] 朱雯文, 叶西宁.  基于卷积神经网络的手势识别算法[J]. 华东理工大学学报(自然科学版), 2018, 44(2): 260-269.
[21]

IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. Lille, Jul 6-11, 2015. Brookline: JMLR, 2015: 448-456.

[22]

ZHAO R Z, NIU X Y, WU Y J, et al. Optimizing CNN-based object detection algorithms on embedded FPGA platforms[C]//Proceedings of the 13th International Symposium on Applied Reconfigurable Computing. Berlin, Heidelberg: Springer, 2017: 255-267.

[23] WAI Y J, BIN MOHD Y USSof Z, BIN SALIM S I, et al.  Fixed point implementation of Tiny- Yolo- v2 using OpenCL on FPGA[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(10): 506-512.