[1] 朱永胜, 王杰, 瞿博阳, 等.  采用基于分解的多目标进化算法的电力环境经济调度[J]. 电网技术, 2014, 38(6): 1577-1584.
[2] MURUGESWARI R, RADHAKRISHNAN S, DEVARAJ D.  A multi-objective evolutionary algorithm based QoS routing in wireless mesh networks[J]. Applied Soft Computing, 2016, 40: 517-525.   doi: 10.1016/j.asoc.2015.12.007
[3] 王珊珊, 杜文莉, 陈旭, 等.  基于约束骨干粒子群算法的化工过程动态多目标优化[J]. 华东理工大学学报(自然科学版), 2014, 40(4): 449-457.   doi: 10.3969/j.issn.1006-3080.2014.04.008
[4] RYU N, LIM S, MIN S, et al.  Multi-objective optimization of magnetic actuator design using adaptive weight determination scheme[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-4.
[5] 陈志旺, 白锌, 杨七, 等.  区间多目标优化中决策空间约束、支配及同序解筛选策略[J]. 自动化学报, 2015, 41(12): 2115-2124.
[6] 郑金华, 李珂, 李密青, 等.  一种基于Hypervolume指标的自适应邻域多目标进化算法[J]. 计算机研究与发展, 2012, 49(2): 312-326.
[7] 王学武, 夏泽龙, 顾幸生.  基于DMOEA/D-ET算法的焊接机器人多目标路径规划[J]. 华南理工大学学报(自然科学版), 2019, 47(4): 99-106.
[8] MAC T T, COPOT C, TRAN D T, et al.  A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization[J]. Applied Soft Computing, 2017, 59: 68-76.   doi: 10.1016/j.asoc.2017.05.012
[9] BADER J, ZITZLER E.  HypE: An algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary Computation, 2011, 19(1): 45-76.   doi: 10.1162/EVCO_a_00009
[10]

ZHOU X, GUO P, CHEN C L P. An algorithm for calculating the hypervolume contribution of a set[C]// World Automation Congress 2012. Mexico: IEEE, 2012: 439-443.

[11]

ZITZLER E, SIMON K. Indicator-based selection in multiobjective search[C]// International Conference on Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer, 2004: 832-842.

[12] IGEL C, HANSEN N, ROTH S.  Covariance matrix adaptation for multi-objective optimization[J]. Evolutionary Computation, 2007, 15(1): 1-28.   doi: 10.1162/evco.2007.15.1.1
[13] BEUME N, NAUJOKS B, EMMERICH M.  SMS-EMOA: Multiobjective selection based on dominated hypervolume[J]. European Journal of Operational Research, 2007, 181(3): 1653-1669.   doi: 10.1016/j.ejor.2006.08.008
[14] HERNANDEZ V A S, SCHUTZE O, WANG H, et al.  The set-based hypervolume newton method for bi-objective optimization[J]. IEEE Transactions on Cybernetics, 2018, : 1-11.
[15] DENG J, ZHANG Q.  Approximating hypervolume and hypervolume contributions using polar coordinate[J]. IEEE Transactions on Evolutionary Computation, 2019, : 1-1.
[16] SHANG K, ISHIBUCHI H, NI X.  R2-based hypervolume contribution approximation[J]. IEEE Transactions on Evolutionary Computation, 2019, : 1-1.
[17] WHILE L, HINGSTON P, BARONE L, et al.  A faster algorithm for calculating hypervolume[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 29-38.   doi: 10.1109/TEVC.2005.851275
[18]

BRADSTREET L, WHILE L, BARONE L. A fast many-objective hypervolume algorithm using iterated incremental calculations[C]// 2010 IEEE Congress on Evolutionary Computation. Spain: IEEE, 2010: 1-8.

[19]

FONSECA C M, PAQUETE L, LOPEZ-IBANEZ M. An improved dimension-sweep algorithm for the hypervolume indicator[C]// 2006 IEEE International Conference on Evolutionary Computation. Canada: IEEE, 2006: 1157-1163.

[20] WHILE L, BRADSTREET L, BARONE L.  A fast way of calculating exact hypervolumes[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(1): 86-95.   doi: 10.1109/TEVC.2010.2077298
[21]

WHILE L, BRADSTREET L. Applying the WFG algorithm to calculate incremental hypervolumes[C]// 2012 IEEE Congress on Evolutionary Computation. Australia: IEEE, 2012: 1-8.

[22]

OVERMARS M H, YAP C K. New upper bounds in Klee’s measure problem[C]//Proceedings 1988 29th Annual Symposium on Foundations of Computer Science. USA: IEEE, 1988: 550-556.

[23] GAZIT H.  New upper bounds in Klee’s measure problem[J]. SIAM Journal on Computing, 1991, 20(6): 1034-1045.   doi: 10.1137/0220065
[24] BEUME N.  S-metric calculation by considering dominated hypervolume as Klee’s measure problem[J]. Evolutionary Computation, 2009, 17(4): 477-492.   doi: 10.1162/evco.2009.17.4.17402
[25]

BEUME N, RUDOLPH G. Faster S-metric calculation by considering dominated hypervolume as Klee’s measure problem[C]// 2nd IASTED International Conference on Computational Intelligence, CI 2006. USA: ACTA Press, 2006: 231-236.

[26]

GUERREIRO A P, FONSECA C M, EMMERICH M T. A fast dimension sweep algorithm for the hypervolume indicator in four dimensions[C]// 24th Canadian Conference on Computational Geometry, CCCG 2012. Canada: Canadian Conference on Computational Geometry, 2012: 77-82.

[27]

WATANABE T, TATSUKAWA T, OYAMA A. On the fast hypervolume calculation method[C]// 2015 IEEE Congress on Evolutionary Computation (CEC). Japan: IEEE, 2015: 965-969.

[28] RUSSO L M S, FRANCISCO A P.  Quick hypervolume[J]. IEEE Transactions on Evolutionary Computation, 2012, 18(4): 481-502.
[29] LACOUR R, KLAMROTH K, FONSECA C M.  A box decomposition algorithm to compute the hypervolume indicator[J]. Computers & Operations Research, 2017, 79: 347-360.
[30] JIANG S, ZHANG J, ONG Y S, et al.  A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm[J]. IEEE Transactions on Cybernetics, 2015, 45(10): 2202-2213.   doi: 10.1109/TCYB.2014.2367526
[31]

郑金华, 邹娟. 多目标进化优化[M]. 北京:科学出版社, 2018:175-176.

[32] DEB K, PRATAP A, AGARWAL S, et al.  A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.   doi: 10.1109/4235.996017
[33] DEB K, JAIN H.  An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach: Part I. Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.   doi: 10.1109/TEVC.2013.2281535
[34]

YE T, RAN C, ZHANG X, et al. PlatEMO: A matlab platform for evolutionary multi-objective optimization[Educational Forum][J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.

[35] BOSMAN P A N, THIERENS D.  The balance between proximity and diversity in multiobjective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 174-188.   doi: 10.1109/TEVC.2003.810761
[36] ZITZLER E, THIELE L.  Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.   doi: 10.1109/4235.797969