[1] PHAN H D, ELLIS K, BARCA J C, et al.  A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms[J]. Neural Computing and Applications, 2019, 8: 1-22.

BÄCK T.Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms[M]. UK: Oxford University Press, 1996.

[3] M R reza BONYADI, Z MICHALEWICZ.  Particle swarm optimization for single objective continuous space problems: A review[J]. Evolutionary Computation, 2017, 25(1): 1-54.   doi: 10.1162/EVCO_r_00180
[4] 赖兆林, 冯翔, 虞慧群.  基于逆向学习行为粒子群算法的云计算大规模任务调度[J]. 华东理工大学学报(自然科学版), 2020, 46(2): -.

MAVROVOUNIOTIS M, YANG S, YAO X. Multi-colony ant algorithms for the dynamic travelling salesman problem[C]//2014 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE). Orlando, FL: IEEE, 2014: 9-16.

[6] MIRJALILI S, MIRJALILI S M, LEWIS A.  Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.   doi: 10.1016/j.advengsoft.2013.12.007
[7] KUMAR V, CHHABRA J K, KUMAR D.  Grey wolf algorithm-based clustering technique[J]. Journal of Intelligent Systems, 2017, 26(1): 153-168.
[8] LONG W, CAI S H, JIAO J J.  Hybrid grey wolf optimization algorithm for high-dimensional optimization[J]. Control and Decision, 2016, 31(11): 1991-1997.
[9] KARABOGA D, BASTURK B.  A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 9(3): 459-471.
[10] SEYEDALI M, AMIR H G, SEYEDEH Z M, et al.  Salp swarm algorithm: A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191.   doi: 10.1016/j.advengsoft.2017.07.002
[11] GOLDBERG D E, HOLLAND J H.  Genetic algorithms and machine learning[J]. Machine Learning, 1988, 3: 95-99.

BREST J, ZAMUDA A, BOSKOVIC B, et al. Dynamic optimization using self-adaptive differential evolution[C]//2009 IEEE Congress on Evolutionary Computation. Norway: IEEE, 2009: 415-422.

[13] SIMON D.  Biogeography-based optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702-713.   doi: 10.1109/TEVC.2008.919004
[14] CHENG R, JIN Y, OLHOFER M, et al.  A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791.   doi: 10.1109/TEVC.2016.2519378
[15] ZHOU Y, HAO J K, DUVAL B.  Reinforcement learning based local search for grouping problems: A case study on graph coloring[J]. Expert Systems with Applications, 2016, 64: 412-422.   doi: 10.1016/j.eswa.2016.07.047
[16] WATKINS C J C H, DAYAN P.  Q -learning[J]. Machine Learning, 1992, 8(3/4): 279-292.   doi: 10.1023/A:1022676722315

LEIBO J Z, ZAMBALDI V, LANCTOT M, et al. Multi-agent reinforcement learning in sequential social dilemmas[C]//16th Conference on Autonomous Agents and Multiagent Systems. Sao Paulo: [s.n.], 2017: 464-473.

[18] ZHANG H, ZHU Y L, CHEN H N.  Root growth model: A novel approach to numerical function optimization and simulation of plant root system[J]. Soft Computing, 2014, 18(3): 521-537.   doi: 10.1007/s00500-013-1073-z
[19] HE S, WU Q H, SAUNDERS J R.  Group search optimizer: An optimization algorithm inspired by animal searching behavior[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 973-990.   doi: 10.1109/TEVC.2009.2011992
[20] CUEVAS E, CIENFUEGOS M, DANIEL Z, et al.  A swarm optimization algorithm inspired in the behavior of the social-spider[J]. Expert Systems with Applications, 2013, 40(16): 6374-6384.   doi: 10.1016/j.eswa.2013.05.041
[21] SHAREEF H, IBRAHIM A A, MUTLAG A H.  Lightning search algorithm[J]. Applied Soft Computing, 2015, 36: 315-333.   doi: 10.1016/j.asoc.2015.07.028