[1] ZHU L L, LU M Q, TIAN H, et al.  Construction of polypseudorotaxane from low-molecular weight monomers via dual noncovalent interactions[J]. Macromolecules, 2011, 44(11): 4092-4097.   doi: 10.1021/ma200825t
[2] 马芳, 李莉, 王杰, 等.  基于γ-环糊精包合作用的大分子自组装网络及其流变性能调控[J]. 华东理工大学学报(自然科学版), 2011, 37(3): 268-273.
[3] WANG L, ZHAO L, LIU M, et al.  Three-dimensional supramolecular architecture based on 4,4’-methylene-bis(benzenamine) and aromatic carboxylic acid guests: Synthons cooperation, robust motifs and structural diversity[J]. Science China Chemistry, 2012, 55(12): 2523-2531.   doi: 10.1007/s11426-012-4701-z
[4] WANG L, XU L Y, XUE R F, et al.  Cocrystallization of N-donor type compounds with 5-sulfosalicylic acid: Theeffect of hydrogen-bonding supramolecular architectures[J]. Science China Chemistry, 2012, 55(1): 138-144.   doi: 10.1007/s11426-011-4394-8
[5] GUO Z X, GONG R Y, MU Y B, et al.  Oligopeptide-assisted self-assembly of oligothiophenes: Co-assembly and chirality transfer[J]. Chemistry: An Asian Journal, 2014, 9(11): 3245-3250.   doi: 10.1002/asia.201402646
[6] XIAO Z Y, WANG W Q, WANG L, et al.  Trimer formation of 6-methyl-1,3,5-triazine-2,4-diamine in salt with organic and inorganic acids: analysis of supramolecular architecture[J]. Science China Chemistry, 2014, 57(12): 1731-1737.   doi: 10.1007/s11426-014-5101-3
[7] 王学军, 许振良, 杨座国, 等.  配合物分子印迹聚合物的识别性能[J]. 华东理工大学学报(自然科学版), 2006, 32(6): 690-694.   doi: 10.3969/j.issn.1006-3080.2006.06.013
[8] GUO Z X, GONG R Y, JIANG Y, et al.  Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: Gel formation and dye release[J]. Soft Matter, 2015, 11(30): 6118-6124.   doi: 10.1039/C5SM00995B
[9] LIU K, LI X, WANG L, et al.  A microporous yttrium metal-organic framework of an unusual nia topology for high adsorption selectivity of C2H2 and CO2 over CH4 at room temperature[J]. Materials Chemistry Frontiers, 2017, 1(10): 1982-1988.   doi: 10.1039/C7QM00164A
[10] LIU G F, SHENG J H, ZHU L L, et al.  Controlling supramolecular chirality of two-component hydrogels by J-and H-aggregation of building blocks[J]. Journal of the American Chemical Society, 2018, 140(20): 6467-6473.   doi: 10.1021/jacs.8b03309
[11] WANG K, GUO Z X, ZHANG L, et al.  Co-assembly of donor and acceptor towards organogels tuned by charge transfer interaction strength[J]. Soft Matter, 2017, 13(10): 1948-1955.   doi: 10.1039/C6SM02691E
[12] JIANG J, TANG Q, XIAO X, et al.  Stimuli-responsive supramolecular assemblies between twisted cucurbit[14]uril and hemicyanine dyes and their analysis application[J]. The Journal of Physical Chemistry B, 2017, 121(49): 11119-11123.   doi: 10.1021/acs.jpcb.7b10285
[13] YAO Y Q, ZHANG Y J, HUANG C, et al.  Cucurbit[10]uril-based smart supramolecular organic frameworks in selective isolation of metal cations[J]. Chemistry of Materials, 2017, 29(13): 5468-5472.   doi: 10.1021/acs.chemmater.7b01751
[14] LIN Q, FAN Y Q, MAO P P, et al.  Pillar[5]arene-based supramolecular organic framework with multi-guest detection and recyclable separation properties[J]. Chemistry: A European Journal, 2017, 24(4): 777-783.   doi: 10.1002/chem.201705107
[15] NI X L, XIAO X, CONG H, et al.  Cucurbit[n]uril-based coordination chemistry: From simple coordination complexes to novel poly-dimensional coordination polymers[J]. Chemical Society Reviews, 2013, 42(24): 9480-9508.   doi: 10.1039/c3cs60261c
[16] CHEN W J, YU D H, XIAO X, et al.  Difference of coordination between alkali-and alkaline-earth-metal ions to a symmetrical α, α’, δ, δ’-tetramethyl cucurbit[6]uril[J]. Inorganic chemistry, 2011, 50(15): 6956-6964.   doi: 10.1021/ic200109s
[17] 王巧纯.  向日葵状葫芦脲的合成与超分子自组装[J]. 功能高分子学报, 2019, 32(1): 9-12.
[18] ZHANG K D, TIAN J, HANIFI D, et al.  Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water[J]. Journal of the American Chemical Society, 2013, 135(47): 17913-17918.   doi: 10.1021/ja4086935
[19] XU S Q, ZHANG X, NIE C B, et al.  The construction of a two-dimensional supramolecular organic framework with parallelogram pores and stepwise fluorescence enhancement[J]. Chemical Communications, 2015, 51(91): 16417-16420.   doi: 10.1039/C5CC05875A
[20] JIANG X Q, HUANG X H, WANG Q C, et al.  A cucurbit[5]uril analogue from dimethylpropanediurea-formaldehyde condensation[J]. Chemical Communications, 2015, 51(14): 2890-2892.   doi: 10.1039/C4CC09900A
[21] WU Y F, HUA H J, WANG Q C.  A CB[5] analogue based supramolecular polymer with AIE behaviors[J]. New Journal of Chemistry, 2018, 42(11): 8320-8324.   doi: 10.1039/C8NJ00633D
[22] QIAN Z L, YUAN T, WANG Q C.  Supramolecular hexagonal network based on a tritopic amine hydrochloride and a cucurbil[5]uril analogue[J]. Research on Chemical Intermediates, 2018, 44(10): 6445-6451.   doi: 10.1007/s11164-018-3500-3
[23] 张力, 张秋禹, 高云燕, 等.  新型聚对苯撑乙烯撑-喹喔啉共聚物的合成与光学性能研究[J]. 化学学报, 2009, 67(21): 2475-2480.
[24] MA X F, SUN R, CHENG J H, et al.  Fluorescence aggregation-caused quenching versus aggregation-induced emission: A visual teaching technology for undergraduate chemistry students[J]. Journal of Chemical Education, 2015, 93(2): 345-350.
[25] THORDARSON P.  Determining association constants from titration experiments in supramolecular chemistry[J]. Chemical Society Reviews, 2011, 40(3): 1305-1323.   doi: 10.1039/C0CS00062K
[26] 姚倩芳, 程文玉, 尹梅贞.  基于大环分子的主客体超分子荧光探针[J]. 应用化学, 2017, 34(12): 1344-1354.
[27] 武鑫, 马骏, 南明, 等.  荧光素衍生物水杨醛荧光素腙的合成及对铜(Ⅱ)离子的检测[J]. 应用化学, 2016, 33(3): 357-363.