[1] SHEN W F, BENYOUNES H, GERBAUD V.  Extension of thermodynamic insights on batch extractive distillation to continuous operation: 1. Azeotropic mixtures with a heavy entrainer[J]. Industrial & Engineering Chemistry Research, 2013, 52(12): 4606-4622.
[2] SHEN W F, BENYOUNES H, GERBAUD V.  Extension of thermodynamic insights on batch extractive distillation to continuous operation: 2. Azeotropic mixtures with a heavy entrainer[J]. Industrial & Engineering Chemistry Research, 2013, 52(12): 4623-4637.
[3] 李清元, 朱志亮.  四组分隔板塔热耦合精馏节能技术[J]. 化学工程, 2011, (12): 6-10, 16.   doi: 10.3969/j.issn.1005-9954.2011.12.002
[4] 刘洪忠.  精馏耦合工艺研究进展及展望[J]. 化工技术与开发, 2018, 47(1): 5-41.
[5] ÖMER Y, KISS A A, KENIG E Y.  Dividing wall columns in chemical process industry: A review on current activities[J]. Separation & Purification Technology, 2011, 80(3): 403-417.
[6] 孙兰义, 李军, 李青松.  隔壁塔技术进展[J]. 现代化工, 2008, 28(9): 38-41, 43.   doi: 10.3321/j.issn:0253-4320.2008.09.008
[7] 岳金彩, 闫飞, 邹亮, 等.  精馏过程节能技术[J]. 节能技术, 2008, (1): 64-67.   doi: 10.3969/j.issn.1002-6339.2008.01.017
[8] 杨祖杰.  隔壁精馏塔节能应用研究[J]. 化工设计, 2019, 29(1): 25-28.   doi: 10.3969/j.issn.1007-6247.2019.01.008
[9] 高凌云, 齐鸣斋.  分壁式精馏塔模拟及节能研究[J]. 现代化工, 2015, 35(7): 135-138.
[10] LING H, QIU J, HUA T, et al.  Remixing analysis of four-product dividing-wall columns[J]. Chemical Engineering & Technology, 2018, 41(7): 1359-1367.
[11] 朱登磊, 尚书勇, 谭超, 等.  基于分壁精馏塔的乙烯装置顺序分离新工艺及其模拟研究[J]. 石油学报(石油加工), 2014, 30(4): 682-686.
[12] 李建清, 王二强, 黄金成, 等.  隔板塔应用于氯乙烯精馏过程的模拟分析[J]. 现代化工, 2012, 32(9): 70-72, 74.   doi: 10.3969/j.issn.0253-4320.2012.09.020
[13] 贾玉霞, 李玉安, 周文勇, 等.  分壁式精馏塔精制丁二烯流程模拟[J]. 化工进展, 2015, 34(10): 3563-3568, 3594.
[14] 郭湘波, 王瑾.  分隔壁塔分离苯和乙烯烷基化产物的模拟[J]. 石油学报(石油加工), 2016, 32(3): 597-604.
[15] DIGGELEN R C V, KISS A A, HEEMINK A W.  Comparison of control strategies for dividing-wall columns[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 288-307.
[16] HALVORSEN I J, SKOGESTAD S.  Minimum energy consumption in multicomponent distillation: 1. Vmin diagram for a two-product column[J]. Industrial & Engineering Chemistry Research, 2003, 42(3): 596-604.
[17] HALVORSEN I J, SKOGESTAD S.  Minimum energy consumption in multicomponent distillation: 2. Three-product petlyuk arrangements[J]. Industrial & Engineering Chemistry Research, 2003, 42(3): 605-615.
[18] HALVORSEN I J, SKOGESTAD S.  Minimum energy consumption in multicomponent distillation: 3. More than three products and generalized petlyuk arrangements[J]. Industrial & Engineering Chemistry Research, 2003, 42(3): 616-629.
[19] 沈鸳语, 黄泽恩, 石剑, 等.  隔壁精馏塔结构参数优化研究[J]. 化学工程, 2019, 47(1): 26-31.   doi: 10.3969/j.issn.1005-9954.2019.01.006
[20] 黄国强, 靳权.  隔壁精馏塔的设计、模拟与优化[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(12): 1057-1064.
[21] 何西涛, 干爱华, 陈宁.  分壁精馏塔分离苯/甲苯/二甲苯的模拟工艺研究[J]. 化学工业与工程, 2012, 29(2): 51-57.   doi: 10.3969/j.issn.1004-9533.2012.02.011
[22] 龚超, 余爱平, 罗祎青, 等.  完全能量耦合精馏塔的设计、模拟与优化[J]. 化工学报, 2012, 63(1): 177-184.   doi: 10.3969/j.issn.0438-1157.2012.01.025
[23] SALVADOR H, JUAN G S, VICENTE R.  Thermodynamically equivalent distillation schemes to the petlyuk column for ternary mixtures[J]. Energy, 2006, 31(12): 2176-2183.   doi: 10.1016/j.energy.2005.10.007
[24] TRIANTAFYLLOU C, SMITH R.  The design and optimization of dividing wall distillation columns[J]. Energy Efficiency in Process Technology, 1993, : 351-360.
[25] KIM Y H.  Structural design and operation of a fully thermally coupled distillation column[J]. Chemical Engineering Journal, 2002, 85(2): 289-301.
[26] KIM Y H.  A new fully thermally coupled distillation column with postfractionator[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45: 254-263.   doi: 10.1016/j.cep.2005.03.013
[27] NELLY R C, ARTURO J G, ANGEL C A, et al.  Optimum design of petlyuk and divided-wall distillation systems using a shortcut model[J]. Chemical Engineering Research & Design, 2010, 88(10): 1405-1418.
[28] CHU K T, CADORET L, YU C C, et al.  A new shortcut design method and economic analysis of divided wall columns[J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9221-9235.
[29] BENYOUNES H, BENYAHIA K, SHEN W F, et al.  Novel procedure for assessment of feasible design parameters of dividing-wall columns: Application to non-azeotropic mixtures[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5307-5318.
[30] SOTUDEH N, SHAHRAKI B H.  A method for the design of divided wall columns[J]. Chemical Engineering & Technology, 2007, 30(9): 1284-1291.
[31] UWITONZE H, HAN S, KIM S, et al.  Structural design of fully thermally coupled distillation column using approximate group methods[J]. Chemical Engineering and Processing: Process Intensification, 2014, 85: 155-167.
[32] UWITONZE H, HAN S, HWANG K S.  New design method for fully thermally coupled distillation column using group and approximate methods[J]. Industrial & Engineering Chemistry Research, 2014, 53(30): 11979-11988.
[33] UWITONZE H, HWANG K S, LEEA I.  A new design method and operation of fully thermally coupled distillation column[J]. Chemical Engineering and Processing: Process Intensification, 2016, 102: 47-58.
[34] SEIHOUB F Z, BENYOUNES H, SHEN W F, et al.  An improved shortcut design method of divided wall columns exemplified by a liquefied petroleum gas process[J]. Industrial & Engineering Chemistry Research, 2017, 56(34): 9710-9720.
[35] LORENA E R, NELLY R, ANGEL C, et al.  Shortcut design of fully thermally coupled distillation systems with postfractionator[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6287-6296.
[36] DEJANOVIC I, MATIJASEVIC L, OLUJIC Z.  Dividing wall column: A breakthrough towards sustainable distilling[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49: 559-580.   doi: 10.1016/j.cep.2010.04.001
[37] DEJANOVIC I, MATIJASEVIC L, OLUJIC Z.  An effective method for establishing the stage and reflux requirement of three-product dividing wall columns[J]. Chemical and Biochemical Engineering Quarterly, 2011, 25(2): 147-157.