[1] AYMAN S, WESAM E, AHMED S, et al.  A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer[J]. Biomedicine & Pharmacotherapy, 2017, 95: 1209-1218.
[2] XING Y X, DING T, WANG Z Q, et al.  Temporally controlled photothermal/photodynamic and combined therapy for overcoming multidrug resistance of cancer by polydopamine nanoclustered micelles[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 13945-13953.
[3]

李颖. 阿霉素/二甲双胍共载脂质体的构建及克服肿瘤多药耐药的研究[D]. 杭州: 浙江大学, 2018.

[4] NIGAM S, BARICK K C, BAHADUR D, et al.  Development of citrate-stabilized Fe3O4 nanoparticles: Conjugation and release of doxorubicin for therapeutic applications[J]. Journal of Magnetism and Magnetic Materials, 2010, 323(2): 237-243.
[5] IIJIMA S.  Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58.   doi: 10.1038/354056a0
[6] IIJIMA S, ICHIHASHI T.  Single-shell carbon nanotubes of 1 nm diameter[J]. Nature, 1993, 363: 603-605.   doi: 10.1038/363603a0
[7] 李红波, 张静, 金赫华, 等.  单一导电属性及手性单壁碳纳米管的分离技术[J]. 物理化学学报, 2012, 28(10): 2447-2455.   doi: 10.3866/PKU.WHXB201209041
[8] ANTONELLI A, SERAFINI S, MENOTTA M, et al.  Improved cellular uptake of functionalized single-walled carbon nanotubes[J]. Nanotechnology, 2010, 21(42): 425101-.   doi: 10.1088/0957-4484/21/42/425101
[9] HASHEMZADEH H, RAISSI H.  The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: A molecular dynamics simulation study[J]. Journal of Molecular Modeling, 2017, 23(8): 222-231.   doi: 10.1007/s00894-017-3391-z
[10] LIU J J, WANG C, WANG X J, et al.  Mesoporous silica coated single-walled carbon nanotube served as drug carrier used for cancer combination therapy[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2016, 12(2): 522-523.
[11] 李洁, 张敏, 章弘扬, 等.  (6,5)手性单壁碳纳米管的双水相分离及其对紫杉醇的载药研究[J]. 华东理工大学学报(自然科学版), 2019, 45(1): 67-73.
[12] LI R B, WU R A, ZHAO L, et al.  P-Glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells[J]. ACS Nano, 2010, 4(3): 1399-1408.   doi: 10.1021/nn9011225
[13] CHENG W, NIE J P, XU L, et al.  pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18462-18473.
[14] 徐欢, 周美玲, 葛琳, 等.  人血清白蛋白在蛋白多肽类药物长效化中的应用[J]. 中国生物工程杂志, 2019, 39(1): 82-89.
[15] ESTHER H, RONALD L, RUTH M.  The covalent binding of daunomycin and adriamycin to antibodies, with retention of both drug and antibody activity[J]. Cancer Research, 1975, 35(5): 1175-1181.
[16] BARBARA S, SILVIA A.  Design of folic acid-conjugated nanoparticles for drug targeting[J]. Journal of Pharmaceutical Sciences, 2000, 89(11): 1452-1464.   doi: 10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P
[17]

瞿小兰. 叶酸-白蛋白-多柔比星的制备及其抗肿瘤性质研究[D]. 武汉: 华中科技大学, 2009.

[18] OHKAWA K, HATANO T, TSUKADA Y, et al.  Chemotherapeutic efficacy of the protein-doxorubicin conjugates on multidrug resistant rat hepatoma cell line in vitro[J]. British Journal of Cancer, 1993, 67(2): 274-278.   doi: 10.1038/bjc.1993.52
[19] RIPAMONTI M, PEZZONI G, PESENTI E, et al.  In vivo anti-tumour activity of FCE 23762, a methoxymorpholinyl derivative of doxorubicin active on doxorubicin-resistant tumour cells[J]. British Journal of Cancer, 1992, 65(5): 703-707.   doi: 10.1038/bjc.1992.148
[20] COLEY H M, TWENTYMAN P R, WORKMAN P, et al.  9-Alkyl, morpholinyl anthracyclines in the circumvention of multidrug resistance[J]. European Journal of Cancer, 1990, 26(6): 665-667.   doi: 10.1016/0277-5379(90)90112-7