[1] LIN Z, LU P, HSU C H, et al.  Hydrogen-bonding-induced nanophase separation in giant surfactants consisting of hydrophilic 60 fullerene tethered to block copolymers at different locations[J]. Macromolecules, 2015, 48(16): 5496-5503.   doi: 10.1021/acs.macromol.5b00741
[2] DI MAURO A E, STRICCOLI M, DEPALO N, et al.  Selective confinement of oleylamine capped Au nanoparticles in self-assembled PS-b-PEO diblock copolymer templates[J]. Soft Matter, 2014, 10(11): 1676-1684.   doi: 10.1039/C3SM52596A
[3] 刘本昕, 何昌玉, 谭连江, 等.  还原响应型嵌段共聚物自组装纳米胶束作为siRNA运输载体的研究[J]. 功能高分子学报, 2018, 31(3): 216-224.
[4] LI X X, HUO X, HAN H J, et al.  Synthesis, self-assembly and pH sensitivity of a novel fluorinated triphilic block copolymer[J]. Chinese Journal of Polymer Science, 2017, 35(11): 1363-1372.   doi: 10.1007/s10118-017-1963-0
[5] GOSEKI R, ITO S, HIRAO A.  Synthesis of multicomponent asymmetric star-branched polymers by iterative methodology with new diblock copolymer in-chain anions as building blocks[J]. Polymer, 2017, 124: 284-292.   doi: 10.1016/j.polymer.2017.07.058
[6] ZHANG Y, CAO M, HAN G, et al.  Topology affecting block copolymer nanoassemblies: Linear block copolymers versus star block copolymers under pisa conditions[J]. Macromolecules, 2018, 51(14): 5440-5449.   doi: 10.1021/acs.macromol.8b01121
[7] SHENG Y, YANG X, YAN N, et al.  Janus-like spheres, disks, rings, cylinders, and vesicles from the self-assembly of mixture of AB and BC diblock copolymers in A- and C-selective solvents[J]. Soft Matter, 2013, 9(27): 6254-6262.   doi: 10.1039/c3sm00029j
[8] 韩慧娇, 宋雅萍, 金玲, 等.  ABC型pH响应含氟三亲性嵌段共聚物的合成与自组装[J]. 华东理工大学学报(自然科学版), 2019, 45(1): 50-57.   doi: 10.14135/j.cnki.1006-3080.20180118003
[9] YAN N, LIU X, ZHANG Y, et al.  Confined co-assembly of AB/BC diblock copolymer blends under 3D soft confinement[J]. Soft Matter, 2018, 14(23): 4679-4686.   doi: 10.1039/C8SM00486B
[10] LIU H B, GUO Z R, HE S, et al.  Synthesis and self-assembly of ABC linear triblock copolymers to target CO2-responsive multicompartment micelles[J]. Rsc Advances, 2016, 6(89): 86728-86735.   doi: 10.1039/C6RA18826E
[11] CONG Y, ZHOU Q, XU Y, et al.  Morphology transformation of multicompartment self-assemblies of ABC triblock copolymers[J]. Polymer, 2017, 116: 173-177.   doi: 10.1016/j.polymer.2017.03.081
[12] ZHU J T, HAYWARD R C.  Wormlike micelles with microphase-separated cores from blends of amphiphilic AB and hydrophobic BC diblock copolymers[J]. Macromolecules, 2008, 41(21): 7794-7797.   doi: 10.1021/ma801783m
[13] HAN Y Y, CUI J, JIANG W.  Vesicle structure and formation of AB/BC amphiphile mixture based on hydrogen bonding in a selective solvent: a monte carlo study[J]. Journal of Physical Chemistry B, 2012, 116(30): 9208-9214.   doi: 10.1021/jp3009783
[14] 刘柱, 杲云, 曹红亮.  两亲性嵌段共聚物合成及亲疏水链段质量比对自组装形貌的影响[J]. 华东理工大学学报(自然科学版), 2018, 44(2): 189-194.
[15] LIU C, HILLMYER M A, LODGE T P.  Multicompartment micelles from pH-responsive miktoarm star block terpolymers[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2009, 25(24): 13718-13725.   doi: 10.1021/la900845u
[16] GROSCHEL A H, MULLER A H E.  Self-assembly concepts for multicompartment nanostructures[J]. Nanoscale, 2015, 7(28): 11841-11876.   doi: 10.1039/C5NR02448J
[17] MARSAT J N, HEYDENREICH M, KLEINPETER E, et al.  Self-assembly into multicompartment micelles and selective solubilization by hydrophilic-lipophilic-fluorophilic block copolymers[J]. Macromolecules, 2011, 44(7): 2092-2105.   doi: 10.1021/ma200032j
[18] 刘雅琨, 李欣欣, 霍晓, 等.  pH敏感含氟三亲性嵌段共聚物的合成及自组装[J]. 上海理工大学学报, 2016, 38(5): 504-510.
[19] BOBRIN V A, MONTEIRO M J.  Temperature-directed self-assembly of multifunctional polymeric tadpoles[J]. Journal of the American Chemical Society, 2015, 137(50): 15652-15655.   doi: 10.1021/jacs.5b11037
[20] KINSEY T, MAPESA E U, WANG W Y, et al.  Impact of molecular architecture on dynamics of miktoarm star copolymers[J]. Macromolecules, 2018, 51(14): 5401-5408.   doi: 10.1021/acs.macromol.8b00624
[21] LOBLING T I, IKKALA O, GROSCHEL A H, et al.  Controlling multicompartment morphologies using solvent conditions and chemical modification[J]. ACS Macro Letters, 2016, 5(9): 1044-1048.   doi: 10.1021/acsmacrolett.6b00559
[22] YANG Y Q, ZHENG J W, MAN S K, et al.  Synthesis of poly(ionic liquid)-based nano-objects with morphological transitions via RAFT polymerization-induced self-assembly in ethanol[J]. Polymer Chemistry, 2018, 9(7): 824-827.   doi: 10.1039/C8PY00040A
[23] ZEHM D, RATCLIFFE L P D, ARMES S P.  Synthesis of diblock copolymer nanoparticles via RAFT alcoholic dispersion polymerization: Effect of block copolymer composition, molecular weight, copolymer concentration, and solvent type on the final particle morphology[J]. Macromolecules, 2013, 46(1): 128-139.   doi: 10.1021/ma301459y
[24] BLANAZS A, RYAN A J, ARMES S P.  Predictive phase diagrams for raft aqueous dispersion polymerization: Effect of block copolymer composition, molecular weight, and copolymer concentration[J]. Macromolecules, 2012, 45(12): 5099-5107.   doi: 10.1021/ma301059r
[25] CALLAWAY C P, BOND N, HENDRICKSON K, et al.  Structural tunability of multicompartment micelles as a function of lipophilic-fluorophilic block length ratio[J]. Journal of Physical Chemistry B, 2018, 122(50): 12164-12172.   doi: 10.1021/acs.jpcb.8b07769
[26] HAN X, ZHANG X X, ZHU H F, et al.  Effect of composition of PDMAEMA-b-PAA block copolymers on their pH- and temperature-responsive behaviors[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2013, 29(4): 1024-1034.   doi: 10.1021/la3036874
[27] ALIZADEH R, GHAEMY M.  pH-responsive ABC type miktoarm star terpolymers: Synthesis via combination of click reaction and SET-LRP, characterization, self-assembly, and controlled drug release[J]. Polymer, 2015, 66: 179-191.   doi: 10.1016/j.polymer.2015.04.034