[1] DEB K, PRATAP A, AGARWAL S, et al.  A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.   doi: 10.1109/4235.996017
[2]

ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the strength Pareto evolutionary algorithm[C]//Fifth Conference on Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. Greece: IEEE, 2001: 95-100.

[3] ZHANG Q, LI H.  MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.   doi: 10.1109/TEVC.2007.892759
[4]

COELLO COELLO C A, LECHUGA M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation. USA: IEEE, 2002: 1051-1056.

[5] YUE C T, QU B Y, LIANG J.  A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(5): 805-817.   doi: 10.1109/TEVC.2017.2754271
[6]

LIANG J, YUE C T, QU B Y. Multimodal multi-objective optimization: A preliminary study[C]//2016 IEEE Congress on Evolutionary Computation (CEC). Canada: IEEE, 2016: 2454-2461.

[7]

KERSCHKE P, GRIMME C. An expedition to multimodal multi-objective optimization landscapes[C]//International Conference on Evolutionary Multi-Criterion Optimization. Germany: Springer, 2017: 329-343.

[8] LIU Y, YEN G G, GONG D.  A multi-modal multi-objective evolutionary algorithm using two-archive and recombination strategies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(4): 660-674.   doi: 10.1109/TEVC.2018.2879406
[9] LIANG J, XU W W, YUE C T.  Multimodal multiobjective optimization with differential evolution[J]. Swarm and Evolutionary Computation, 2019, 44: 1028-1059.   doi: 10.1016/j.swevo.2018.10.016
[10] HU Y, WANG J, LIANG J.  A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm[J]. Information Sciences, 2019, 62: 1-17.
[11] YU K J, LIANG J J, QU B Y.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models[J]. Applied Energy, 2018, 226: 408-422.   doi: 10.1016/j.apenergy.2018.06.010
[12]

LIANG J, GUO Q Q, YUE C T. A Self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems[C]//International Conference on Swarm Intelligence. UK: Springer, 2018: 550-560.

[13] LYNN N, SUGANTHAN P N.  Heterogeneous comprehensive learning particles warm optimization with enhanced exploration and exploitation[J]. Swarm and Evolutionary Computation, 2015, 24: 11-24.   doi: 10.1016/j.swevo.2015.05.002
[14] LYNN N, SUGANTHAN P N.  Ensemble particle swarm optimizer[J]. Applied Soft Computing, 2017, 55: 533-548.   doi: 10.1016/j.asoc.2017.02.007
[15] QU B Y, SUGANTHAN P N, DAS S.  A Distance-based locally informed particle swarm model for multimodal optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(3): 387-402.   doi: 10.1109/TEVC.2012.2203138
[16]

YAN L, LI G S, JIAO Y C. A performance enhanced niching multi-objective bat algorithm for multimodal multi-objective problems[C]// 2019 IEEE Congress on Evolutionary Computation (CEC). New Zealand: IEEE, 2019: 1275-1282.

[17]

FAN Q Q, YAN X F. Solving multimodal multiobjective problems through zoning search[C]// IEEE Transactions on Systems, Man, and Cybernetics: Systems. USA: IEEE, 2019: 1-12.

[18]

SHI R Z, LIN W, LIN Q Z. Multimodal multi-objective optimization using a density-based one-by-one update strategy[C]// 2019 IEEE Congress on Evolutionary Computation (CEC). New Zealand: IEEE, 2019: 295-301.

[19]

MAITY K, SENGUPTA R, SHA S. MM-NAEMO: Multimodal neighborhood-sensitive archived evolutionary many-objective optimization algorithm[C]//IEEE Congress on Evolutionary Computation. USA: IEEE, 2019: 286-294.

[20]

JI J Y, YU W J, CHEN W N. Solving multimodal optimization problems through a multiobjective optimization approach[C]//2017 Seventh International Conference on Information Science and Technology (ICIST). Vietnam: IEEE, 2017: 458-463.

[21] CHENG R, JIN Y C, OLHOFER M, et al.  A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791.   doi: 10.1109/TEVC.2016.2519378
[22] FAN Q, LI N, ZHANG Y, et al..  Zoning search using a hyper-heuristic algorithm[J]. Science China Information Sciences, 2019, 62(9): 1869-1919.
[23] LIU X F, ZHAN Z H, GAO Y, et al.  Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(4): 587-602.   doi: 10.1109/TEVC.2018.2875430
[24] FENG X, XU H Y, WANG Y B, et al.  The social team building optimization algorithm[J]. Soft Computer, 2019, 23(15): 6533-6554.   doi: 10.1007/s00500-018-3303-x
[25] MODLMEIER A P, LASKOWSKI K L, Brittingham H A, et al.  Adult presence augments juvenile collective foraging in social spiders[J]. Animal Behavior, 2015, 109: 9-14.   doi: 10.1016/j.anbehav.2015.07.033