高级检索

    董海军, 陈爱平, 何洪波, 吕慧, 李春忠. 溶剂热法制备TiO2/g C3N4及其光催化性能[J]. 华东理工大学学报(自然科学版), 2013, (5): 536-541.
    引用本文: 董海军, 陈爱平, 何洪波, 吕慧, 李春忠. 溶剂热法制备TiO2/g C3N4及其光催化性能[J]. 华东理工大学学报(自然科学版), 2013, (5): 536-541.
    DONG Hai-jun, CHEN Ai-ping, HE Hong-bo, Lv Hui, LI Chun-zhong. Solvothermal Synthesis and Photocatalytic Performance of TiO2/g C3N4 Photocatalyst[J]. Journal of East China University of Science and Technology, 2013, (5): 536-541.
    Citation: DONG Hai-jun, CHEN Ai-ping, HE Hong-bo, Lv Hui, LI Chun-zhong. Solvothermal Synthesis and Photocatalytic Performance of TiO2/g C3N4 Photocatalyst[J]. Journal of East China University of Science and Technology, 2013, (5): 536-541.

    溶剂热法制备TiO2/g C3N4及其光催化性能

    Solvothermal Synthesis and Photocatalytic Performance of TiO2/g C3N4 Photocatalyst

    • 摘要: 采用溶剂热法合成了可见光响应的TiO2/g C3N4复合光催化剂,并对TiO2/g C3N4进行质子化处理。通过X射线衍射(XRD)、氮气吸附 脱附BET法、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT IR)、紫外 可见漫反射(UV vis DRS)和荧光光谱(PL)等方法对样品进行了表征,并以甲基橙(MO)光催化降解为模型反应,考察了可见光下制备的样品的光催化性能。结果表明,多孔TiO2纳米晶与g C3N4形成具有“芝麻饼”形貌的复合结构;TiO2/g C3N4复合光催化剂的光吸收带边扩展到465 nm,较TiO2出现明显红移;TiO2与g C3N4能带匹配耦合,有效地抑制了电子与空穴的复合;质子化处理过程能够提高可见光区吸收强度和电子的传导能力,增强了TiO2的光催化活性。

       

      Abstract: TiO2/g C3N4 composite photocatalyst with visible light response was synthesized by the solvothermal method, and then the as synthesized photocatalyst was protonated. The samples were characterized by X ray diffraction(XRD), nitrogen absorption desorption, scanning electron microscope(SEM), transmission electron microsope(TEM), Fourier transform infrared spectrometer (FT IR), UV vis diffuse reflect spectroscope(UV vis DRS) and photoluminescence spectra (PL). The photocatalytic performance of the TiO2/g C3N4 was evaluated by the degradation of methylene orange (MO) under the visible light. The results show that porous TiO2 nanocrystalline and g C3N4 are able to form “sesame cake” composite structure. The absorption edge of TiO2/g C3N4 photocatalyst expands to 465 nm, which appears remarkable red shift compared with TiO2. The coupling of TiO2 and g C3N4 with suitably matching band level of conduction and valance bands provides TiO2/g C3N4 photocatalyst with the driving forces to separate and transfer photogenerated electron hole pairs. The protonation process can improve the absorption of visible light, increase electronic transfer ability and enhance the TiO2/g C3N4 photocatalyst activity.

       

    /

    返回文章
    返回