高级检索

    赵芮, 郎峻, 顾幸生. 基于多目标离散正弦优化算法的混合零空闲置换流水车间调度[J]. 华东理工大学学报(自然科学版), 2022, 48(1): 76-86. DOI: 10.14135/j.cnki.1006-3080.20201201005
    引用本文: 赵芮, 郎峻, 顾幸生. 基于多目标离散正弦优化算法的混合零空闲置换流水车间调度[J]. 华东理工大学学报(自然科学版), 2022, 48(1): 76-86. DOI: 10.14135/j.cnki.1006-3080.20201201005
    ZHAO Rui, LANG Jun, GU Xingsheng. Mixed No-Idle Permutation Flow Shop Scheduling Problem Based on Multi-Objective Discrete Sine Optimization Algorithm[J]. Journal of East China University of Science and Technology, 2022, 48(1): 76-86. DOI: 10.14135/j.cnki.1006-3080.20201201005
    Citation: ZHAO Rui, LANG Jun, GU Xingsheng. Mixed No-Idle Permutation Flow Shop Scheduling Problem Based on Multi-Objective Discrete Sine Optimization Algorithm[J]. Journal of East China University of Science and Technology, 2022, 48(1): 76-86. DOI: 10.14135/j.cnki.1006-3080.20201201005

    基于多目标离散正弦优化算法的混合零空闲置换流水车间调度

    Mixed No-Idle Permutation Flow Shop Scheduling Problem Based on Multi-Objective Discrete Sine Optimization Algorithm

    • 摘要: 针对以最小化最大完工时间(makespan)和最小化最大拖期(maximum tardiness)为目标的多目标混合零空闲置换流水车间调度问题(Mixed No-idle Permutation Flow Shop Scheduling Problem, MNPFSP),提出了一种多目标离散正弦优化算法(Multi-objective Discrete Sine Optimization Algorithm, MDSOA)。首先,建立外部档案集(AS)存储Pareto解,并在每次迭代后对AS进行更新;其次,在正弦优化算法(Sine Optimization Algorithm,SOA)的基础上,引入迭代贪婪(IG)算法的破坏重构机制,重新定义了一种适用于离散调度问题的位置更新策略;最后,引入快速非支配排序和拥挤距离对种群进行筛选,在保留精英解的同时保证了解的多样性和分布性。选取Taillard Benchmark中11个不同规模的算例进行仿真实验,并将仿真结果与NSGA-II和NSGA-III算法进行比较,验证了MDSOA求解MNPFSP的有效性。

       

      Abstract: It is of great significance to study the flow shop scheduling problem with no-idle constrains, since no-idle production scheduling exists widely in modern industry. This paper proposes a multi-objective discrete sine optimization algorithm (MDSOA) to solve the mixed no-idle permutation flow shop scheduling problem (MNPFSP), whose goal is to minimize the makespan and the maximum tardiness. Firstly, an external archive set (AS) is established to store Pareto front and update after each iteration. Secondly, based on the basic sine optimization algorithm, the destruction reconstruction mechanism of the iterative greedy (IG) algorithm is introduced to redefine a location update strategy, whose key feature is suitable for discrete scheduling problems. Besides, both the fast non-dominate sorting method and the crowding distance are utilized to screen the population for retaining the elite solutions and ensuring the diversity and distribution of solutions. Finally, simulation experiments are made via 11 instances with different scales in Taillard Benchmark, which, together with the comparisons with NSGA-II and NSGA-III, demonstrate the effectiveness of the proposed MDSOA algorithm for solving MNPFSP.

       

    /

    返回文章
    返回