引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 31次   下载 8  
分享到: 微信 更多
引入迁移和变异策略的改进鸟群算法及其在参数估计中的应用
王建伟
作者单位E-mail
王建伟 华东理工大学 1352509787@qq.com 
摘要:
为了解决鸟群算法(BSA)易陷入局部最优问题,提出了一种引入迁移策略和变异策略的改进鸟群算法(IBSA)。在鸟群飞行阶段引入迁移策略有助于提高鸟群向适应度更高位置迁移能力,提高鸟群算法的收敛速度;在寻优后期引入变异策略,提高鸟群的局部寻优能力,提高了算法的寻优能力。选取6个典型的测试函数进行寻优实验,实验证明与PSO、BA、BSA算法相比,IBSA具有更高的寻优精度和更快的寻优速度。在此基础上,将IBSA应用于发酵动力学模型参数估计中,与Gauss-Newton、GA、MAEA等算法相比,IBSA的参数估计值的偏差平方和最小,具有更高的模型拟合精度。
关键词:  鸟群算法  迁移策略  变异策略  参数估计
DOI:
分类号:
基金项目:
Improved bird swarm algorithm based on migration and mutation strategy and its application in parameter estimation
wangjianwei
Abstract:
In order to solve the shortcoming of the local optima for bird swarm algorithm,an improved bird swarm algorithm (IBSA) is proposed, which introduces migration strategy and mutation strategy. Introducing the migration strategy into the stage of flight is helpful to improve the birds to adapt to a higher degree of migration ability and to improve the convergence speed of BSA; In the later stage of the optimization, introducing the mutation strategy is helpful to improve the local searching ability of the bird swarm and to improve the searching ability of the algorithm. 6 typical test functions are selected to perform the optimization experiment and the result of experiment show that IBSA has higher searching precision and faster searching speed compared with PSO、BA and BSA. Finally, IBSA is used to estimate the parameters of the fermentation kinetic model. Compared with Gauss-Newton, GA, MAEA, the parameters estimated by IBSA have the least square Sum of Deviations Squares and IBSA has Higher model fitting accuracy.
Key words:  Bird swarm algorithm  migration strategy  mutation strategy  parameter estimation

地址:上海市梅陇路130号华东理工大学研究生楼1015室 邮编:200237

电话:021-64253812 传真:021-64253812 电子信箱: ecustxbb@ecust.edu.cn