###
DOI:
本文二维码信息
基于小波递归神经网络的间歇过程迭代学习优化控制
宋继荣
(华东理工大学)
Batch Process Iterative Learning Control Based on Wavelet Recurrent Neural Network
宋继荣
(east china university of science and technology)
摘要
相似文献
本文已被:浏览 1136次   下载 
投稿时间:2011-02-22    修订日期:2011-02-22
中文摘要: 针对间歇过程,提出了基于小波神经网络的迭代学习优化控制算法,实现产品终点质量指标的控制。小波递归神经网络用于建立提供长期预测的间歇过程模型。由于模型误差以及未知干扰的影响,基于预测模型得到的控制变量在实际应用中得不到期望的终点质量指标。利用间歇过程的重复特性,采用迭代学习优化控制改善批次间的产品质量,根据以前批次的模型预测误差均值来修正神经网络模型预测输出,继而计算出下一个批次的控制输入。随着批次的进行,模型误差逐渐消失,控制输入达到最优控制。仿真实验验证了该算法的有效性。
Abstract:An iterative learning control (ILC) algorithm based on wavelet recurrent neural network(WRNN) is proposed to control product final quality in batch process. Wavelet recurrent neural network is used to modeling long range batch process model. Due to model-plant mismatches and unmeasured disturbances, the calculated control policy based on WRNN model may not be optimal when applied to the actual process. By utilizing the repetitive nature of batch process ,ILC is used to improve product final quality .from batch to batch. Prediction models are modified based on previous prediction model mean errors. model errors are gradually reduced from batch to batch, control inputs approach to optimal control policy. The effectiveness is verified on a simulated batch process.
文章编号:20110222001     中图分类号:    文献标志码:
基金项目:
引用文本:


用微信扫一扫

用微信扫一扫