###
华东理工大学学报(自然科学版):2017,43(3):389-396
本文二维码信息
码上扫一扫!
一种改进的SOM神经网络在污水处理故障诊断中的应用
岳宇飞, 罗健旭
(华东理工大学自动化研究所, 上海 200237)
An Application of Improved SOM Neural Network in Fault Diagnosis of Wastewater Treatment
YUE Yu-fei, LUO Jian-xu
(Institute of Automation, East China University of Science and Technology, Shanghai 200237, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 3882次   下载 542
投稿时间:2016-10-12    
中文摘要: 自组织映射(SOM)神经网络初始权值的选取对神经网络的性能有重要的影响。采用改进的帝国竞争算法(ⅡCA)优化局部权重失真指数(LWDI)寻优SOM神经网络的初始权值;利用改进后的SOM神经网络(ⅡCA-SOM)对污水处理过程数据进行聚类和故障诊断。实验结果表明,与传统的SOM算法相比,ⅡCA-SOM算法取得了更好的聚类效果,且故障诊断的误诊率更低。
Abstract:The selecting of the initial weights of the self-organizing map (SOM) neural network has an important impact on the performance of the network.In this paper,by means of an improved imperialists competitive algorithm (ⅡCA) to minimize the locally weight distortion index,the initial weights of the SOM neural network can be obtained optimally.Besides,the improved SOM neural network (ⅡCA-SOM) is applied in the clustering and fault diagnosis of the wastewater treatment process data.The experiment result demonstrates that,compared with the traditional SOM neural network,ⅡCA-SOM can attain better performance in clustering and lower misdiagnosis rate in the fault diagnosis.
keywords: fault diagnosis  cluster  SOM  ICA
文章编号:     中图分类号:TP183    文献标志码:
基金项目:国家自然科学基金(61304071)
引用本文:
岳宇飞,罗健旭.一种改进的SOM神经网络在污水处理故障诊断中的应用[J].华东理工大学学报(自然科学版),DOI:10.14135/j.cnki.1006-3080.2017.03.015.

用微信扫一扫

用微信扫一扫