引用本文:[点击复制]
[点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2953次   下载 257 本文二维码信息
码上扫一扫!
一种改进的SOM神经网络在污水处理故障诊断中的应用
岳宇飞,罗健旭
0
(华东理工大学自动化研究所, 上海 200237)
摘要:
自组织映射(SOM)神经网络初始权值的选取对神经网络的性能有重要的影响。采用改进的帝国竞争算法(ⅡCA)优化局部权重失真指数(LWDI)寻优SOM神经网络的初始权值;利用改进后的SOM神经网络(ⅡCA-SOM)对污水处理过程数据进行聚类和故障诊断。实验结果表明,与传统的SOM算法相比,ⅡCA-SOM算法取得了更好的聚类效果,且故障诊断的误诊率更低。
关键词:  故障诊断  聚类  自组织映射  帝国竞争算法
DOI:10.14135/j.cnki.1006-3080.2017.03.015
投稿时间:2016-10-12
基金项目:国家自然科学基金(61304071)
An Application of Improved SOM Neural Network in Fault Diagnosis of Wastewater Treatment
YUE Yu-fei,LUO Jian-xu
(Institute of Automation, East China University of Science and Technology, Shanghai 200237, China)
Abstract:
The selecting of the initial weights of the self-organizing map (SOM) neural network has an important impact on the performance of the network.In this paper,by means of an improved imperialists competitive algorithm (ⅡCA) to minimize the locally weight distortion index,the initial weights of the SOM neural network can be obtained optimally.Besides,the improved SOM neural network (ⅡCA-SOM) is applied in the clustering and fault diagnosis of the wastewater treatment process data.The experiment result demonstrates that,compared with the traditional SOM neural network,ⅡCA-SOM can attain better performance in clustering and lower misdiagnosis rate in the fault diagnosis.
Key words:  fault diagnosis  cluster  SOM  ICA

用微信扫一扫

用微信扫一扫