引用本文:[点击复制]
[点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2954次   下载 139 本文二维码信息
码上扫一扫!
基于偏最小二乘的Kriging代理模型在加氢裂化建模中的应用
乔成,钟伟民,范琛
0
(华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237)
摘要:
提出了一种改进的代理模型方法 (Kriging with Partial Least Squares,KPLS)。该方法在Kriging模型的基础上引入偏最小二乘的思想,利用偏最小二乘方法构建新的Kriging模型的高斯核函数。将该模型应用于加氢裂化过程建模,有效地提高了航煤、柴油质量收率的预测精度。采用 GLAMP(Global and local search strategy)优化算法对建立的KPLS模型进行优化,仿真结果显示航煤、柴油质量收率得到了显著提升。
关键词:  加氢裂化  Kriging代理模型  偏最小二乘  收率预测  GLAMP优化算法
DOI:10.14135/j.cnki.1006-3080.2017.03.014
投稿时间:2016-09-26
基金项目:国家自然科学基金(61422303,21376077);上海市人才发展资金;中央高校基本业务费专项资金
Kriging Agent Model Based on Partial Least Squares in the Application of the Hydrocracking Modeling
QIAO Cheng,ZHONG Wei-min,FAN Chen
(Key Laboratory of Advanced Control and Optimization for Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China)
Abstract:
This paper proposes a modified agent modeling method,Kriging with partial least squares (KPLS).By means of Kriging model,we use the partial least squares method to establish a new Gaussian kernel function.Compared with the traditional Kriging model,the proposed KPLS model can effectively improve the accuracy of the fuel and diesel yield prediction.Besides,the GLAMP (global and local search strategy) search algorithm is used to optimize the KPLS model.The simulation results show that the yield of diesel and fuel is significantly improved.
Key words:  hydrocracking  Kriging surrogate model  partial least squares  yield prediction  GLAMP optimization algorithm

用微信扫一扫

用微信扫一扫