引用本文:[点击复制]
[点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 2352次   下载 106 本文二维码信息
码上扫一扫!
基于局部特征的多模态过程监控方法
许圆圆,杨健,谭帅,侍洪波
0
(华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237)
摘要:
多模态过程中各个模态均有不同的特征,因此模态数据的局部特征比全局特征更能有效、合理地表征实际化工过程。为利用多模态数据的局部特征,提出了基于数据局部特征的多模型方法(LFMM)用于多模态过程的监控。首先,离线阶段考虑到数据间的时序信息以及数据特征,利用不同时间窗内数据的变异系数(CV)完成多模态数据集的聚类;然后,考虑到不同模态的数据在空间分布上具有不同的疏密性特征,建模阶段利用局部离群因子(LOF)算法计算数据在其模态数据集中的局部密度,监控时将在线数据的局部密度作为统计特征,并构造全局概率指标用于多模态过程监控;最后,通过田纳西伊斯曼(TE)过程验证了本文方法的有效性。
关键词:  多模态  局部特征  多模型  过程监控  时序信息
DOI:10.14135/j.cnki.1006-3080.2017.02.017
投稿时间:2016-09-20
基金项目:国家自然科学基金(61374140);国家自然科学基金青年基金(61403072)
Multimode Process Monitoring Based on Local Feature
XU Yuan-yuan,YANG Jian,TAN Shuai,SHI Hong-bo
(Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China)
Abstract:
Every mode has different features in a multimode process,so the local features of modal data can be more effectively than global features for the reasonable characterization of chemical process.In order to use the local characteristics of multimodal data,this paper proposes a local feature based multiple model method,called,Local Feature-based Multiple Model (LFMM),for process monitoring.Firstly,the sequential information between data and the modal data features is utilized in the offline phase and the coefficient of variance of data in different time windows is applied for the clustering of the training data of multimode process.In the latter model phase,LOF algorithm is utilized to compute the local data density in their mode data set.In the online phase,by taking the local data density as statistic character,a new global probability index is established as a monitoring statistic for multimode process monitoring.Finally,TE process is adopted to verify the effectiveness of the proposed method.
Key words:  multimode  local feature  multiple model  process monitoring  sequential information

用微信扫一扫

用微信扫一扫